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Global observations of reflectors in the mid-mantle
with implications for mantle structure and
dynamics
Lauren Waszek1,2, Nicholas C. Schmerr3 & Maxim D. Ballmer 4

Seismic tomography indicates that flow is commonly deflected in the mid-mantle. However,

without a candidate mineral phase change, causative mechanisms remain controversial.

Deflection of flow has been linked to radial changes in viscosity and/or composition, but a

lack of global observations precludes comprehensive tests by seismically detectable features.

Here we perform a systematic global-scale interrogation of mid-mantle seismic reflectors

with lateral size 500–2000 km and depths 800–1300 km. Reflectors are detected globally

with variable depth, lateral extent and seismic polarity and identify three distinct seismic

domains in the mid-mantle. Near-absence of reflectors in seismically fast regions may relate

to dominantly subvertical heterogeneous slab material or small impedance contrasts.

Seismically slow thermochemical piles beneath the Pacific generate numerous reflections.

Large reflectors at multiple depths within neutral regions possibly signify a compositional or

textural transition, potentially linked to long-term slab stagnation. This variety of reflector

properties indicates widespread compositional heterogeneity at mid-mantle depths.

DOI: 10.1038/s41467-017-02709-4 OPEN

1 Department of Physics, New Mexico State University, 1255 North Horseshoe, Las Cruces, NM 88003, USA. 2 Research School of Earth Sciences, The
Australian National University, Canberra, ACT 0200, Australia. 3 Department of Geology, University of Maryland, 8000 Regents Drive, College Park, MA
20742, USA. 4 Institute of Geophysics, ETH Zurich, Sonneggstrasse 5 8092 Zurich, Switzerland. Correspondence and requests for materials should be
addressed to L.W. (email: lauren.waszek@cantab.net)

NATURE COMMUNICATIONS |  (2018) 9:385 |DOI: 10.1038/s41467-017-02709-4 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8886-5030
http://orcid.org/0000-0001-8886-5030
http://orcid.org/0000-0001-8886-5030
http://orcid.org/0000-0001-8886-5030
http://orcid.org/0000-0001-8886-5030
mailto:lauren.waszek@cantab.net
www.nature.com/naturecommunications
www.nature.com/naturecommunications
rtronnes
Highlight

rtronnes
Highlight

rtronnes
Highlight



The Earth’s mantle undergoes significant mineralogical
and physical changes as temperature and pressure increase
with depth. Characterising these changes in the upper

400–800 km has advanced our understanding of heat and
material fluxes through the mantle. In particular, variations in
the depth of seismic discontinuities, which reflect and convert
seismic waves1, 2, have been used to map solid-to-solid
mineralogical phase changes and thus regional variations in
mantle temperature and/or composition. A classic example is
the pressure–temperature sensitivity of the depth of major dis-
continuities that bound the Mantle Transition Zone (MTZ) at
410 and 660 km. These boundaries demarcate transitions of oli-
vine to wadsleyite and ringwoodite to bridgmanite+ferroper-
iclase3. In contrast, there are no known phase changes in mantle
minerals that readily explain regional discontinuities (here
termed seismic 'reflectors') at mid-mantle depths (from 800 to
1300 km)4–12. Thus the origin and geodynamic implications of
these mid-mantle reflectors remain elusive.

Recent work posits that the mid-mantle may represent a sig-
nificant transition in Earth’s rheology and/or composition13–15.
Tomographical studies have found that only few recently sub-
ducted slabs sink unimpeded through the MTZ16, 17; many slabs
flatten and appear to stagnate at either ~660 km or ~1000 km
depth18. Upwelling mantle plumes also commonly show deflec-
tion at similar mid-mantle depths19, 20. However, observations of
Tethys and Farallon lithosphere in the lower mantle21 reveal that
flow crosses these depths, at least regionally.

While deflections of mantle flow near 660 km depth can be
related to the effects of a major phase transition22, 23, those in the
mid-mantle have instead been ascribed to a range of alternative
mechanisms. These include the presence of a viscosity jump14, 24,
radial change(s) in mantle composition13 and mineral phase
changes for particular material compositions, such as transitions
within subducted slabs25, 26 and/or impedance contrasts arising
from the different composition of the subducted material
itself27, 28. Testing various processes for the origin of the reflectors
(compositional vs. rheological) requires detailed evaluation of
seismic reflections on a global scale.

Previous work shows that any mid-mantle reflectors display
immense variation in seismic properties and depths, and no
global mantle discontinuity has been detected beneath the 660.
Abundant regional mid-mantle reflectors and scatterers occur
from 700 to nearly 2000 km depth in the mantle4–11, 13, 29.
Reflectors are observed beneath areas of active subduction
including Indonesia and the Marianas6–12. Numerous small-scale
(~10s of kilometres) features are detected around the Pacific
Ocean, which are interpreted as subducted oceanic material27–33.
Studies also find evidence for reflectors in regions of upwelling,
such as the Hawaiian and Icelandic hotspots19, 34, 35. Further
isolated observations are situated well away from subduction
zones and hotspots12, 36–38. There are also several locations where
mid-mantle reflectors have not been found despite detailed
examination, such as the Tonga subduction zone2, 39, and vast
regions remain to be mapped at mid-mantle depths13. This is in
part due to a lack of studies of the mid-mantle on a global scale.
Indeed, a comprehensive worldwide investigation is required to
further our understanding of the mid-mantle.

Here we perform a systematic global-scale seismic interroga-
tion of mid-mantle reflectors. We search for reflectors in the 800
to 1300 km depth range, using precursors to the seismic phase SS.
This shear wave has two paths in the mantle and reflects once
from Earth’s surface at its midpoint; SS precursors are generated
by any reflectors beneath the surface. The arrival time of this
seismic phase is thus sensitive to the depth of the bounce point. A
large global dataset of SS-precursor arrivals is partitioned into
regional bins and stacked into vespagrams, employing common

mid-point stacking (see Methods section for more information).
We demonstrate using synthetic modelling that our dataset is
sensitive to near-horizontal reflectors with length scales on the
order of 500 to 1500 km and show that the reflectors are too small
to be resolved by global tomography techniques. We measure the
location, geographic size, depth, and impedance contrast of the
reflectors in the mid-mantle, finding large variability. We inves-
tigate a range of different geographical bin sizes to constrain the
variation in these properties across multiple length scales and
perform more detailed analysis in regions of higher data sampling
density. Reflector properties are evaluated in the context of
average seismic velocity from global tomography models40. Such
an evaluation puts our observations into the framework of global
mantle flow patterns41, performed to improve our understanding
of variations in mantle temperature and composition (e.g.,
refs. 16, 17, 20). Mapping reflectors in the mid-mantle is key to
constraining the heterogeneity that may exist in the mid-mantle,
with implications for the history of mantle mixing.

Results
General observations. A systematic search reveals widespread
regional reflectors in the mid-mantle (Figs. 1, 2a–c and 3a, Sup-
plementary Figs. 1–8). The wide geographic variation in the
depth and lateral extent of these reflectors indicates that a
coherent global discontinuity at any individual mid-mantle
depth can be excluded; correspondingly, a global stack shows
no features here (Supplementary Fig. 1). This is consistent
with global seismic velocity models42, 43. Reflectors occur
across the entire depth range explored, corroborating previous
regional studies2, 4–8, 11. Reflections from 875 km depth are most
abundant (Fig. 4a), with less pronounced peaks in the range
of 1000–1300 km depth. The geographically most extensive
reflectors are located beneath the Pacific Ocean and (offshore)
eastern South America. The scale lengths of reflectors vary
laterally over 500–2000 km, and some bin locations have multiple
reflectors at two or more depths (Fig. 2c). Reflectors of small
regional extent (<500 km) are located beneath the North Pacific,
western South America, and Eastern Europe, in agreement with
prior studies (e.g., refs. 9–12, 32).

Most precursors have the same polarity as the amplitude of SS,
implying either a velocity or density increase with depth (i.e., a
positive shear impedance increase with depth), but a subset (26%)
of the observed reflectors display opposite polarity (Figs. 3b and
4b). Polarities of the reflectors are consistent within geographic
regions but do not vary systematically with depth (Supplementary
Fig. 8). The corresponding shear-wave velocity contrasts (assum-
ing no density contrast) range from ±0.7 to ±3.2% (Fig. 4b);
contrasts below 0.7% are too weak to be detected by our stacking
methodology. Likewise, density contrasts (assuming zero con-
trasts in intrinsic shear modulus) are therefore calculated as
approximately ±1.4 to ±7.3%. Actual shear impedance contrasts
will be intermediate combinations across the two properties and
also depend upon the geometry of the reflector within the bin; the
observed seismic properties represent an average across the length
scale of the bin.

Several areas are characterised by the absence of reflections in
our stacks across the full depth range explored, termed here as
'non-detections' (Fig. 2d). Indeed, 24% of the bins in Fig. 3a do
not display reflectors (Table 1). Notable coherent geographical
regions without reflectors exist beneath the North Pacific
(Aleutian Trench), central Europe, and the Brazilian coast
(Peru-Chile Trench). The amount of non-detections varies
regionally. Some areas display a higher proportion of bins with
coherent reflectors (e.g., beneath the Pacific Ocean), whereas
other locations have a higher percentage of bins with non-
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detections (e.g., beneath Europe and the Brazilian coast) (Figs. 5
and 6). The presence and quantity of non-detections also varies
across length scales, evidenced by variation between bin sizes
(Supplementary Figs. 9, 10). Larger bins typically display a higher
proportion of non-detections (Supplementary Table 1).

A lack of reflector may result from multiple factors, not solely
limited to the absence of sub-horizontal mid-mantle hetero-
geneity. For example, small impedance contrasts that do not
generate energy above the noise level, gradual radial transitions
(>65 km) including gradual thermal gradients that do not
produce reflectors at SS frequencies, or complex three-
dimensional (3-D) structure that does not stack coherently
within the bin would not generate reflectors44–46. Owing to the
mid-point stacking technique, any reflectors that are not oriented
sub-horizontally, such as dipping structures, will also not stack
coherently.

We examine these averaging effects across bin sizes, by
comparing the small and large bins to confirm variation in
reflector coherency across lateral length scales (Supplementary
Figs. 4, 5). The averaging effect is exemplified beneath the mid-
Pacific Ocean, where the depths of reflectors vary significantly for
the 5° bins (Supplementary Fig. 4a). Conversely, the larger 15°
bins predominantly display fewer reflectors (Supplementary
Fig. 4d); a consequence of averaging over small length-scale
variations. We also find bins with non-observations that are
situated directly adjacent to bins with robust detections, despite

using overlapping bin geometries. For example, bins with no
reflectors are located within regions of significant variability
beneath the South Pacific. This observation suggests highly
complex structure that is not fully resolved by SS precursors and
could be constrained by alternative, higher-resolution techniques
(e.g., refs. 27, 33, 35).

Observability of reflectors. As mentioned above, any S-wave
reflections retrieved by our method require sub-horizontal
reflectors of a particular impedance contrast and lateral extent
for a given bin size. We observe precursor/SS amplitude ratios in
the range of ±0.03, and the smallest SdS/SS amplitude ratios that
we detect are 0.0065. This marks the approximate limit of
detectability of the precursors; precursor signals that are smaller
than this amplitude will not be visible above the noise level.
Below, using synthetic modelling, we quantify the sensitivity of
the SS precursors to the sizes and strengths of reflectors for
multiple bin sizes. This allows us to establish a framework for the
interpretation of our observations across different length scales
and place constraints on the limitations of the method.

We use the 2.5-D spectral elements code AxiSEM47 to generate
synthetic seismograms and stacks and obtain estimates on the
observability of reflectors as a function of their strength and size
relative to the bin. We determine candidate seismic impendence
contrasts to which our observations correspond and explore the
influence of the lateral size of reflector as a function of bin size.
We present these as contour plots (Fig. 7), which reveal the
detection limits as a function of bin size (yellow-to-red colours in
Fig. 7). We test the same size and strength of reflectors for bins of
radii 25°, 15° and 10°, in order to also explore the dependence of
observability of a given reflector on absolute bin size.

The modelling reveals that, generally, the SS precursors are
sensitive to horizontal structures consistent on length scales
similar to the bin sizes (500–1500 km), with detectable reflectors
resulting from sharp and large transitions in shear impedance
(<5 km gradients, shear impedance <5%). As expected, reflectors
that comprise a larger proportion of the bin area are detectable
for much lower velocity contrasts than smaller reflectors. Larger
reflectors will generate coherent signals in stacks, whereas smaller
reflectors will be somewhat suppressed by bounce points from
portions of the cap with no signal, reducing observability of the
SS precursors.

The influence of reflector size with respect to the bin is clearest
in Fig. 7a, where the relative size of the reflector proportional to
the bin increases from 10 to 50%. Putting this into the context of
our observations, the smallest observed SdS/SS amplitude ratio of
0.0065 corresponds to a minimum impedance contrast of about
0.8%. Thus the synthetic calculations show that a reflector at this
limit of observability will be observed in a bin for which it
comprises at least 50% of its size. In other words, the weakest
reflector we detect has to be on the order of 500 km in size.

As bin size decreases, the observability of reflectors is skewed
significantly towards detecting smaller reflectors. For example, for
bin sizes of radius 10°, almost all theoretical reflectors may be
observed in high-quality stacks. This is corroborated in our
observations for various bin sizes, whereby the proportion of
observations generally increases with decreasing bin size (Table 1).
Thus the reflectors that are only resolvable in the smaller bin sizes
must vary on short length scales and hence are suppressed within
larger bins. This confirms that the method is primarily suited to
detecting features on the length scales of the bins. The modelling
thus allows us to estimate the geographical size as well as lateral
variation in topography of the reflectors in our subsequent
analysis, based on any consistent variation across bin sizes (or
lack thereof).
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Fig. 1 SS data and coverage. a SS and S1000S ray paths. b Example of a
high-quality SS seismogram (event: 1 January 2016, Indian-Antarctic ridge;
station: DLRN). Precursors from 410 and 660 km are clearly visible. c
Global dataset showing 45,634 SS bounce points
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Our calculations highlight the trade-off between reflector size
and impedance contrasts for a bin. The measurements represent
an average value across the size of the bin, and it is not possible to
distinguish between large but weak reflectors versus small but
strong reflectors within an individual bin. Consequently, in terms
of amplitude ratios, we consider only the polarity rather than
absolute measurements. However, the lateral variability of
amplitude ratios may be used to infer lateral variation in strength
as well as the presence of a reflector (e.g., in the case of a laterally
intermittent discontinuity).

In future, more computationally intensive modelling work, as
well as more data with different length scales of resolution, is
required to investigate the complex features that exist in the mid-
mantle. Our synthetic tests elucidate that we should expect
averaging across any structures present in the bin. Very likely,
such structures include multiple reflectors at different depths in
one bin, reflectors with laterally varying or potentially anisotropic
impedance contrast, as well as tilted reflectors.

Relationship to 3-D tomography. We explore the relationship of
reflectors to radial seismic velocity gradients, and the influence of
3-D velocity structure in the mantle, to explore various potential
structural and geodynamical origins for the reflectors. Investiga-
tions are performed for two recent shear-wave mantle tomo-
graphy models, S20RTS48 or SEMUCB-W149. For each model, we

calculated the average 3-D radial velocity gradient for a bin within
±25 km of the estimated depth of the reflector. The SS precursor
data are sensitive to velocity gradients that occur across this radial
length scale or less. We identified no robust correlation between
reflectors and velocity gradients (Fig. 8), indicating that the
mantle structures that cause the reflections are not resolved by
tomography. Notably, all calculated shear-wave velocity gradients
are positive, yet a significant proportion of the reflectors have
negative impedance contrasts. For both of these reasons, the
reflectors must therefore result from structures with shorter
length scales than those in the tomographic models.

Lateral velocity anomalies as resolved by mantle tomography
may also affect the localisation of reflectors by SS precursors. Our
initial dataset was not corrected for 3-D velocity structure, and we
test the influence of 3-D heterogeneity by performing corrections
for individual ray paths, by calculating for delay times of S1000S
with respect to SS. We find that there are limited travel
time differences between the vespagrams with uncorrected
data and vespagrams corrected for each model (Supplementary
Figs. 11, 12). For all of the 10° bins, S20RTS alters the times by an
average of 0.6± 3.3 s, whereas the average change for SEMUCB-
W1 is 2.3± 2.8 s (using the standard deviation of all corrected
measurements as the error). This corresponds to depth correc-
tions and errors of approximately 3± 17 km and 12± 14 km.
This is likely due to averaging effects over the range of distances
and azimuths within each bin (see Supplementary Fig. 13 for
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distribution across all data). The major effect of the corrections is
in the waveform shape of the precursors, rather than significant
differences in their arrival time. These discrepancies may result
from defocussing of reflectors at other depths, as well as the main
SS arrival, and influences the travel time of the maximum
amplitudes. The difference is clear in the shape of the waveforms
in the cross-sections and particularly noticeable for the SEMUCB-
WM1 corrections (Supplementary Fig. 12c). As a consequence,
we do not use 3-D corrections for our data analysis, as the average
correction falls below the extent of our 25 km depth bins.

Regional domain analysis of reflectors. We interpret our
observations in the context of mid-mantle tomography models

(Fig. 3). Data from a recent study integrate cluster analysis
of five mantle tomography models to independently generate
'vote maps' of seismically fast, slow, and neutral (i.e., with
velocities close to the global average) domains40. Each tomo-
graphy model is allocated a 'vote' as to whether the mid-mantle
structure is grouped into one of these three clusters (or domains)
to generate a global combined map. We define each bin
according to the average votes, which accounts for bins that may
incorporate multiple domain types. Fig. 6 shows cross-sections
through these vote maps; shades of blue and red indicate regions
for which the majority of tomography models agree that mantle
rocks are fast and slow, respectively; no shading corresponds to
'neutral'.
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We analyse our data in the context of the domain in which
reflectors are located, since these roughly correspond to the
degree-2 structure of whole-mantle convection also predicted by
global geodynamic models41. Fast regions are commonly related
to downwelling cold material (subducted slabs), whereas slow
regions correspond to hot upwellings (plumes). Neutral domains
are not correlated to either upwelling or downwelling flow and
may be characterised in some regions by the impedance of radial
flow, such as stagnation of slabs or plumes at various depths in
the MTZ17, 20, 50. By considering our observations in the context
of the average seismic velocity properties, we obtain an insight
into the relationship of horizontal reflectors to mantle flow and
deflection processes and associated thermochemical
heterogeneities.

We find statistically significant differences between seismic
domains for bin sizes up to 10° (p< 0.1; i.e., the probability of
different domains having the same seismic properties is <10%)
(see Methods section for full details). We characterise each bin
according to the average seismic domain votes and use a z-test to
perform systematic statistical comparisons for proportion of
reflector observations versus non-detections and polarity between
each domain types (Table 1). For the combined bin approach and
5° bins, the proportions of bins containing reflectors differ
significantly between seismic domains (p< 0.05). As bin size
increases, both the differences between domains and the
significance decrease and are ultimately no longer statistically
significant at 15° bin sizes. This statistical analysis highlights the
averaging effects for larger bins, including the fact that larger bins
are more likely to encompass multiple seismic domains.

Geographical bins from slow domains (upwellings) predomi-
nantly show reflectors (85%), which vary on short length scales
(500 km) across the full depth range, and roughly follow the
tomographically defined domain boundaries in vertical cross-
sections (Fig. 6a, c). The small length scales of lateral variations
are highlighted by the decrease in the number of reflectors
observed as bin size increases. This reveals that the reflectors vary
on length scales corresponding to the size of the 5° bins (up to
1000 km) and thus are not resolvable in the larger bins. Of the
reflectors detected, relatively more possess negative polarity
(31%) compared to other domains, suggesting local mantle
heterogeneity to produce such seismic structures51. This supports
the inference that these reflectors correspond to a significant

compositional and/or structural difference between slow regions
and other seismic domains (see Table 1).

In contrast, fast domains (downwellings) are characterised by
relatively more non-detections than slow regions (i.e., only 71%
of the reliable bins contain reflectors). Spatially coherent
reflectors are rarely found within the bulk of the fast domain,
and there is no consistent relationship to length scale of
observation. The majority of reflectors are located near to the
edges of the domains (Figs. 3a and 6a, b). Comparisons between
bins of differing sizes reveal no trend in quantity of detections
with increasing bin size, indicating sporadic, isolated reflectors,
with varied length scales across our range of resolution. In
comparison to the slow domains, a greater proportion of the
observed reflectors have positive polarities than negative (76%).

Compared to fast and slow regions, neutral domains contain an
intermediate proportion of reflectors within bins (77%), with the
majority exhibiting positive polarity (74%). An assessment of the
proportion of observations for different bin sizes in the neutral
domains reveals that lateral scale lengths of the reflectors are
geographically consistent across larger length scales than other
domains. The defining characteristics of reflectors in neutral
domains, compared to those in fast and slow regions, is that they
are often laterally coherent across bins, forming very large and
continuous features with consistent depths. Neutral regions
further display a majority of shallow detections around 900 km
depth; 50% of the reflectors are within ±100 km of this depth.
Unlike in fast and slow domains, these reflectors tend to be
situated away from domain edges and can extend across the
entire domain.

Discussion
The observed mid-mantle reflectors do not exhibit any geo-
graphic relationship to surface features. Instead, they correlate to
mid-mantle structure as independently imaged by seismic
tomography. There is a good agreement between tomography
models in terms of the locations and extent of mid-mantle
tomographic domains40, which reflect large-scale mantle flow
patterns41. For example, broad mid-mantle upwelling is likely
manifested above the large low shear-velocity provinces (LLSVPs)
of Africa and the South-central Pacific. Downwelling should be
focussed along the high velocity belts found across Asia and the

Table 1 Quantity and percentage of reflector observations and polarity

Cap size Domain Fast Neutral Slow

Combined caps Observations 209n,s 71% 571f,s 77% 130f,n 85%
Non-detections 84n,s 29% 173f,s 23% 23f,n 15%
Positive polarity observations 158s 76% 422 74% 90f 69%

5° caps Observations 113s 73% 309s 75% 83f,n 88%
Non-detections 42s 27% 102s 25% 11f,n 12%
Positive polarity observations 82s 72% 209 68% 50f 60%

7.5° caps Observations 97s 77% 263s 75% 50f,n 68%
Non-detections 29s 23% 87s 25% 24f,n 32%
Positive polarity observations 68s 70% 197 75% 40f 79%

10° caps Observations 69n 52% 219f 60% 42 58%
Non-detections 62n 48% 147f 40% 31 42%
Positive polarity observations 48 70% 164 75% 32 77%

15° caps Observations 79 57% 155 53% 26 53%
Non-detections 59 43% 137 47% 23 47%
Positive polarity observations 59 74% 104 67% 17 67%

Proportion of cluster votes for caps with observations, proportion of votes for caps with no reflectors, and proportion of observations with positive polarity, for each type of seismic velocity domain.
Corresponding fractions are also included as percentages; for each bin size, percentages of observations and non-detections (row 1 plus row 2) therefore total 100%. Results are shown for the combined
bin sizes (i.e., the map completed iteratively beginning with smallest cap size) and for all the bin sizes separately. Variations between bins of different sizes are related to the lateral scale length of
reflectors. The domains are determined by calculating the average cluster analysis votes across the bin at the depth of the reflector (see Methods section for details). Significant differences between
domain types, calculated via z-tests, are shown via the inclusion of superscript letters, taking the first letter of each domain type. The presence of a superscript letter indicates that the domains differ at
the p = 0.1 level. Full p-values are presented in Supplementary Table 1.
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Americas, where Tethys, Pacific and Farallon lithosphere sinks
through the mid-mantle16.

The South Pacific is our best-resolved example of a slow region,
with dense horizontal reflectors that vary on short lateral length
scales. Reflectors are absent in only very few slow domain bins
(primarily beneath the Pacific Ocean and likely as a result of
variation on length scales too small to resolve) and occur near the
edges or tops of slow domains (Fig. 6) or LLSVPs. One hypothesis
for mid-mantle reflections is that they result from a composi-
tional change across the top edges of the LLSVPs, which are
interpreted as thermochemical piles that host primordial material
and/or basalt-enriched subducted material52–54. Some thermal
contribution may arise if the gradients are extremely strong
(occurring over vertical distances of less than approximately 65
km). The abundance of reflectors with near-equal occurrences of
positive and negative impedance contrasts may attest to hetero-
geneity within the LLSVPs55. The top of the low-velocity anomaly
would produce a negative impedance contrast, although such a
feature may be gradational. Streaks of basalt/harzburgite would
produce alternating bands of elevated and lowered seismic velo-
city and density contrasts, similar to the observed varied impe-
dance contrasts and polarities within the data. This interpretation
implies that the numerous reflectors within the seismically slow
region map the shallow roof of a compositionally distinct Pacific
LLSVP40, 51, 55 (Fig. 6). Although not recovered here due to sparse

data coverage in the region (Fig. 5a, Supplementary Fig. 9), we
would predict similar reflectors near the roof of the African
LLSVP.

The comparatively high quantity of non-detections in 'fast
regions' is partially due to sparse data coverage in regions of
expected mid-mantle downwellings (Fig. 5a, Supplementary
Fig. 9), although the best-example fast regions in Europe have
extensive data sampling (Fig. 3). Heterogeneity in fast regions
(i.e., downgoing slabs of cold, seismically faster basalt and harz-
burgite) is expected to be dominantly sub-vertically oriented, as
well as small scale, and thus difficult for the SS precursors to
resolve compared to shorter wavelength methods4–11. Reflectors
smaller than ~500 km are difficult to be resolved (see Fig. 7).
Alternatively, no reflectors would be detected if the impedance
contrasts are small (less than approximately 0.7% averaged across
the entire bin). The scattered mid-mantle reflectors in these
regions are consistent with small-scale heterogeneity on the order
of a few hundred kilometres, as may be expected from the vast
range in composition of subducted material.

Deeper sub-horizontal reflections as observed from within the
fast domains may arise from coherently stacked piles of basalt56

(Fig. 9). Alternatively, they may be generated by phase transitions
within the basalt, continental crust, or sediment layers of the
subducted slabs26, 57. Such an explanation requires specific geo-
metries of the these (thin) layers to sustain large (>500 km)

Depth (km)

1–200 201–400 401–600 601–800 801–1000 1001–1200 1201–1400

Two reflectors
Quality A
Quality B
Quality C
No detection

800 900 1000 1100 1200 1300

a

b

c

Fig. 5 Data coverage and distribution of bounce points with respect to bins. a Data coverage of all bins. Shaded regions correspond to regions included in
bins. Non-shaded areas are regions with insufficient data coverage or poor-quality stacks that were removed after quality checking. b Data coverage for
only bins with non-detections. c Data distribution per bin. The size of circles in each bin shows the number of data in each bin (see legend). Corresponding
maps for all bins sizes are in the Supplementary Material, along with maps showing the regions without data coverage superimposed on the combined
maps
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coherent reflectors, which would generate a reflector with or
without an accompanying phase transition. We predict similar
results in other fast regions (e.g., Central America), to be obtained
with methods of higher spatial resolution than SS (e.g.,
refs. 11, 33, 35). The observations near to the edges of the fast
regions are likely generated by the expected large impedance
contrast between compositionally distinct domains.

In our best-example 'neutral region' in the Northeast Pacific,
there are two dominant geographically large reflectors at 850 and
1050 km, with scattered deeper detections (Fig. 6). Possible
mechanisms for the deeper reflections are regional changes in

rock texture or composition with depth13, such as a transition
from pyrolite to bridgmanite-enriched mantle50, 58. Our reflec-
tions could alternatively correspond to a regional jump in visc-
osity, which has been proposed to occur at mid-mantle depths14.
Shallower reflections may arise from the top and/or bottom of a
thermally equilibrated (i.e., fossil) slab that stagnates atop the
(textural or compositional) viscosity jump14, 50. Long-term stag-
nation can occur as slab sinking is impeded at a viscosity (or
density) contrast to allow progressive slab warming that removes
the negative buoyancy of the slab. Once oriented horizontally, a
slab then becomes detectable by the SS precursor data. The
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Fig. 6 Cross-sections through vote maps for five mantle tomography models across four regions of high data density. a Central Pacific and South America
(−12°N, 135°E to −12°N, 0°E). b North and South America (90°N, 315°E to −90°N, 315°E). c Central Pacific Ocean (45°N, 135°E to −30°N, 240°E). d North
Pacific Ocean (70°N, 150°E to 0°N, 235°E). eMap showing locations of cross-sections. Observations within 1000 km lateral distance of each cross-section
are included, superimposed at their calculated depths. Tomographically fast and slow regions are shown in blue and pink, respectively, calculated at every
50 km depth, where three or more seismic tomography models agree in cluster vote analysis40. Unshaded regions are neither fast nor slow. Hatched areas
correspond to locations with SS precursor coverage. Black circles are positive polarity reflectors; white circles are negative polarity. Note the vertical
exaggeration of the depth slices
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mapped reflectors are laterally coherent (in depth and polarity)
over thousands of kilometres, and thus witness large-scale mantle
structure, and not just small-to-mid scale heterogeneity.

In eastern South America, another well-resolved 'neutral
region', we observe three reflectors with alternating polarity
(positive at 850, negative at 1000 and positive at 1100 km depth;
Fig. 6a, c). These may have similar origins to those in the North
Pacific, but a different configuration (e.g., stacked fossil slab on
top of the compositional/textural change and/or complex geo-
metrical configuration). Local accumulations of subducted ocea-
nic or continental material may generate further regional
reflectors as a consequence of heterogeneities and phase
changes25, 26, 54, 57.

Our global-scale observations provide the first detection of
widespread reflectors associated with heterogeneity in the lower
mantle. Significant variation in reflector geometry, depth, and
polarity indicates that the underlying mechanisms arise from
distinct origins in tomographically diverse domains. As reflec-
tions are most likely to occur across large-scale compositional
boundaries, this study is a step towards mapping geochemical
reservoirs that host subduction-related59 and/or primordial
materials60 in the convecting mantle. Our study also provides
new evidence for a potentially long-lived reservoir associated with
large-scale heterogeneity in the neutral mid-mantle regions50.
Future work is required to better characterise large-scale com-
positional heterogeneity in the lower mantle and orient our
observations into the context of modern mineral-physics
experimentation as well as geodynamic modelling. The config-
uration of any observed reflectors ultimately informs about the

geometry of mantle reservoirs, as well as the regionally diverse
style and history of mantle flow and mixing.

Methods
Data and processing. The seismic phase SS corresponds to mantle shear waves
that reflect once at the Earth’s surface (Fig. 1a). Underside reflections of seismic
energy from deeper mantle reflectors generate precursors to SS. Interrogating SS
precursors benefits from a near global coverage of mantle shear-wave structure
(Fig. 1b). We have compiled a high-quality dataset of 45,634 hand-picked SS
arrivals (Fig. 1c). The data are stacked into vespagrams using common mid-points
for regional bins of sizes dependent on data density (various examples are shown in
Fig. 2, and Supplementary Figs. 1–3) to reveal the small amplitude precursors not
visible in individual seismograms.

We benefit from the recent expansion of available seismic data, meaning that
this is the largest hand-picked dataset of SS precursors to date. Although our
dataset spans nearly 30 years, approximately half of our data is from the past 7
years, as a result of the recent increase in seismic data coverage. Even so, data
density is still poor in many areas. Fig. 1b shows the geographical coverage of the
SS bounce points. Note that this does not correspond to sensitivity, however; we
also require ample azimuthal and epicentral distance variation across a region to
obtain slowness resolution. Supplementary Fig. 13 contains the entire dataset as a
function of epicentral distance and azimuth; both show good coverage globally, but
the variation in each is clear from the plots. Correspondingly, some regions
therefore suffer a lack of ray paths across the full distance and azimuthal ranges,
explaining why we do not retain bins in some regions with apparently sufficient
data coverage. Our proportional data coverage for each domain agrees well to the
global distribution of domains, and as expected, absolute data coverage increases
with bin size (Supplementary Table 2; also see Supplementary Fig. 9).

We downloaded data from IRIS for every suitable event from January 1988 to
April 2016. Our event criteria involve magnitudes from 6.0 to 7.0 and focal depths
shallower than 30 km. We obtain data from stations in the event-receiver epicentral
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Fig. 7 Theoretical S1000S/SS amplitude ratios for reflectors as a function of
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approximately 0.0065

800

1000

1200

D
ep

th
 (

km
)

a S20RTS

5°
7.5°
10°
15°

b

800

1000

1200

D
ep

th
 (

km
)

0.0000

c SEMUCB−W1

0.0000

5°
7.5°
10°
15°

d

Velocity gradient
(Δ km s−1 km−1)

0.0005 0.0010 0.0015

Velocity gradient
(Δ km s−1 km−1)

0.0005 0.0010 0.0015

Fig. 8 Velocity gradients at the estimated depths of reflectors for S20RTS
and SEMUCB-W1. a Combined bins, S20RTS48. b All bin sizes, S20RTS. c
Combined bins, SEMUCB-W149. d All bin sizes, SEMUCB-W1. Circles
represented observed reflectors. Colours correspond to bin sizes as
indicated in the key in b, d. Lines correspond to the velocity gradient from
PREM42. Velocity gradients are calculated as the average in the bin, across
a vertical distance of ±25 km, centred on the reflector. The smallest cap
sizes deviate furthest from the average velocity gradient. The gradient
tends towards the global average as bin size increases, as expected

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02709-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:385 |DOI: 10.1038/s41467-017-02709-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


distance range from 100° to 180°. The data are first deconvolved from the receiver
response to displacement, rotated to the transverse component and then filtered
from 15 to 75 s for picking of individual data. We initially perform automated
quality checking by removing any seismogram with a root mean square amplitude
in the precursor window >0.3 of the SS signal amplitude. The data are then hand-
picked by event to ensure consistency of SS waveforms and also the part of the SS
that was picked. Final quality checking is performed at this stage to remove any
seismograms with large amplitude arrivals in the precursor window or inconsistent
SS waveforms within an event.

Stacking. Following picking, the data are aligned on the SS peak. For stacking, we
use a relatively short period filter of 10–50 s, maintaining the original SS pick times
(realigned to the position of the maxima of the SS phases). The data are then
normalised according to SS amplitude. We partition the data into overlapping
spherical caps based on their bounce points, to generate regional maps. The geo-
metry is such that the centre point of a bin corresponds to the edge of each adjacent
bin. Generally, even reflectors from the major 410 and 660 km discontinuities are
too small to be detected in all but the highest-quality individual seismograms
(Fig. 1b). Therefore, the binned data are stacked into vespagrams (Supplementary
Fig. 1), which suppress incoherent noise and reveal small but coherent seismic
phases.

Red and blue signals in vespagrams in Fig. 2 and Supplementary Figs. 1–3
correspond to arrivals of seismic energy. A global stack reveals the major
discontinuities at 410 and 660 km depth but no global features in the mid-mantle,
consistent with 1-D seismic velocity models42, 43. SS precursors are identified
within vespagrams using theoretical arrival time and slowness with respect to SS.
The cross-sections beneath the vespagrams (Fig. 2, Supplementary Fig. 1) are taken
through the predicted arrival time and slowness of SS precursors with respect to SS
(dashed line), calculated for PREM42 with the TauP toolkit61, which computes
theoretical ray paths of seismic phases. Signals away from this line are not SS
precursor energy. Using bootstrap resampling with 300 random resamples per
stack, we estimate the 95% confidence levels (two standard deviations) of our data
by calculating the standard deviation of the bootstrapped stacks. Any red-filled
peaks in the cross-sections in Fig. 2 and Supplementary Figs. 1–3 have a 95%
confidence level above zero and are hence significant.

Quality checking. After stacking, we perform quality checks for the vespagram of
each bin. We discard any bins for which the 410 and 660 km discontinuities cannot
be identified with certainty. We then remove stacks with significant noise in the
precursor window or with poor slowness resolution. Significant noise is defined as
non-precursor energy (i.e., away from the predicted arrival time and slowness) with
comparable energy to that on the predicted precursor arrival and slowness line. In
this case, we cannot establish whether the arrivals are actually deflected precursors
or scattered noise energy. Poor slowness resolution, where energy extends across
multiple slownesses, means that it is not possible to determine the true incoming
slowness and hence whether the signals are SS precursors or not.

Following this quality control, we rank our remaining data by quality of the SS
precursor observations, using the non-precursor noise and slowness resolution.
Examples of high-quality 'A' vespagrams are shown in Fig. 2 and Supplementary
Fig. 2. We define any significant peak in the precursor window along the theoretical
arrival time and slowness line as an observation of a mid-mantle feature (Fig. 2a–c).
We analyse vespagrams with rather large slowness ranges of −2 to +2 s/deg to
confirm that the detection is indeed an SS precursor and not energy leaking from
an arrival with a different slowness. Care is also taken to avoid picking potential
side lobes of the 660 km precursor; we do not interpret any signals with an

estimated depth of <800 km, corresponding to 280 s before SS. No significant
arrivals in this window are a negative detection (Fig. 2d; crosses in Fig. 3).

Examples of intermediate-quality 'B' and lower-quality 'C' vespagrams are
included in Supplementary Fig. 3; an observation and a non-observation are shown
for both quality rankings. 'B' quality data are characterised by an increase in energy
away from the predicted arrival time and slowness of the precursors to result in a
slightly noisier vespagram but no interference with the arrivals of interest. 'C'
quality data is noisier throughout the vespagram, with non-significant energy
arriving along the theoretical prediction, and less consistency in the arrivals of
S410S and S660S. The importance of our statistical analysis is highlighted here,
allowing us to discard energy that arrives with the expected theoretical time and
slowness curve but is not significant.

Measurements and observations. The arrival times and amplitudes of the pre-
cursors relative to SS are used to calculate the depths and impedance contrasts of
mid-mantle reflectors. We use the cross-sections taken through the vespagrams at
the theoretical arrival time and slowness of the precursors relative to SS to make
measurements of the arrival times and amplitudes of the precursors with respect to
the SS phase. The SS waveforms are cross-correlated with both positive and
negative arrivals in the precursor window. This identifies waveforms that have a
similar shape to SS and are therefore likely to be SS precursors. Here we make use
of the bootstrapped vespagrams to ensure only the robust SS precursors are
measured. We then measure differential travel time residuals of the precursors with
respect to PREM42, using the Seismic Analysis Code (SAC)62. The arrival times of
the SS precursors are taken at the time of the maximum amplitude of the phase.
Based on the relative arrival times, we calculate estimates of the depth of the
discontinuities using TauP by introducing theoretical reflectors at all depths.

The amplitude ratios of the precursors relative to SS are also measured. We use
the maximum precursor signal amplitude within ±5 s of the cross-correlated arrival
time. This also corresponds to the picked arrival time. The precursor/SS amplitude
ratios are then corrected for the path difference of SS and of the precursors,
incorporating the differing influence of geometrical spreading as well as upper
mantle attenuation. This provides us with reflection coefficients. We ultimately
obtain the estimated impedance contrasts by calculating reflection coefficients for
theoretical mid-mantle discontinuities.

Following conversion of precursor-SS travel time residual to depth, the depths
are partitioned into vertical bins of 25 km, in order to help suppress any 3-D
velocity variations within the vicinity of the reflectors, as well as negate errors due
to measurement uncertainties. Corrections for 3-D velocity structure (see main
text) reveals that the standard deviation in depth errors is approximately 14 or 17
km, depending on the model. We thus estimate that partitioning our depth
observations into 25 km radial bins should yield robust results.

Partitioning the reflectors by depth is also useful for our later interpretation of
the origins of the reflectors, since the depths of a specific reflector arising from a
phase change may vary laterally due to external factors, such as temperature.
Performing travel time corrections for each SS bin may help to improve
constraints, yet will also introduce unanticipated errors due to any discrepancies in
the velocity model employed. For example, altering various travel times will
influence the focussing of precursors within the vespagrams, in turn affecting their
observability, and measured arrival times and amplitudes. Furthermore, the two
models calculate different corrections for the data.

Correlation to velocity domains and statistical calculations. We characterise
the reflectors according to their seismic tomography domain using clustering
analysis of five different tomography models40. This process classifies regions into
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clusters based on similar seismic properties; regions are defined as seismically fast,
slow or neutral/average. The clustering was performed for five tomography models,
which then generated vote maps. For plotting, we define fast or slow regions as
those with three or more votes. Across each bin, we calculate the proportion of
votes for each seismic domain. For bins with reflectors, we evaluate the average of
the votes at the depth of the observed reflector, across the bin. For bins with no
reflectors, we average the results of the cluster votes over the entire depth range of
800–1300 km at intervals of 50 km. The bin is assigned the average votes for each
seismic domain, totalling five per bin. Note that all of the bins with reflectors
necessarily display no reflectors at the majority of depths explored, and so our
observations and statistics are heavily skewed towards and characterised by the
detections rather than non-observations.

We calculate the statistical significance between two of the seismic domains,
comparing the quantity of observations and their polarity. We employ a one-tail z-
test, to obtain the probability that the observations and polarities from any two
types of seismic domain are significantly different from one another. Table 1 shows
the observational results for each, with significance indicated, and Supplementary
Table 1 contains the calculated p-values.

Travel time uncertainties and 3-D velocity corrections. The errors in our cal-
culated depths are estimated from the bootstrap resampling. For each observation,
we generate 300 random resampled datasets and restack within ±15 s of the ori-
ginal reflector arrival time. The arrival time of the maximum peak in this window is
used as an estimate for the reflector arrival time in each bootstrapped stack. The
standard error on the mean of these 300 picks provides an estimate of the error on
the arrival time of the reflector in the original vespagrams; i.e., how the arrival time
would vary if data coverage differed. The mean error on all travel time measure-
ments is 4.5 s, corresponding to an average depth error of 22 km. The errors on the
picks of the arrival times are calculated by combining the sampling rate of the
cross-sections through the vespagrams (0.1 s) to give a total picking error of 0.14 s.

Further uncertainties are calculated based on 3-D velocity corrections from two
shear-wave velocity models: S20RTS48 and SEMUCB-W149. These are not
incorporated as errors since they are not measurement uncertainties. In order to
estimate the influence of 3-D velocity structure, we calculate 3-D tomography
corrections for the models and calculate the average 3-D residual for each bin. For
each seismogram, we use ray tracing through the models to obtain the delay time of
S1000S with respect to SS. We also correct the individual data for the two shear-
wave velocity models, using the theoretical delay times for S1000S with respect to
SS. The data are then re-stacked into vespagrams; we recreate the four high-quality
observations in Fig. 2 (Supplementary Figs. 11, 12). We select 1000 km depth as the
reference since it is near to the mid-point of our depth range and our depth of
interest.

Data sensitivity. The data are sensitive to near-horizontal reflectors and lateral
variation of length scales that depend on the size of the bin. The minimum lateral
size is therefore approximately 500 km for the 5° bins ranging up to 1500 km for
the 15° bins. The lateral resolution tends to decrease as data density decreases; and
bin sizes necessarily increase in order to obtain enough data for successful stacking.
Here we band pass filter our data at periods of 15–50 s. Correspondingly the size of
the SS Fresnel zone is also fairly large, on the order of 1000 km, and further
complicated by its mini-max shape44. This can introduce errors into depth cal-
culations, which are somewhat negated via averaging by binning and stacking the
data.

In order to investigate the lateral extent of the discontinuities, we explore
different cap sizes of 5°, 7.5°, 10° and 15°. There are significant discrepancies
between our results for the different sizes of spherical caps, attesting to the variable
length scales of heterogeneity. In the 5° cap results, several areas show detections of
mid-mantle discontinuities, which vary on shorter length scales than those of larger
bins. This finding indicates that lateral variation of the depth (and impedance
contrast) of mid-mantle reflectors is averaged in larger bins. Other regions display
observations in small bins and non-observations in large bins; indicating that some
reflectors are either not large enough across larger bins to produce coherent
detections or their depth varies too much across the length scale of the larger bin to
stack coherently. This is corroborated by reflector properties tending towards an
average as bin size increases, with differences between domains no longer
significant for the largest bins. Analogously, the absence of a global mid-mantle
discontinuity is not inconsistent with the widespread presence of regional
reflectors.

Larger caps generally display larger signal-to-noise ratios as a result of more
data in the stack and averaging over the lateral heterogeneities. However, this
lateral smearing of heterogeneity becomes an issue for detecting smaller reflectors,
as described above. Conversely, smaller cap sizes are too noisy in many regions and
suffer from poor data coverage in some areas. To resolve this issue, we iteratively
complete the map in Fig. 3 by systematically populating empty areas with
increasingly large cap sizes. Although this approach generates a greater number of
bins in regions with the highest data density, we prefer it as it allows us to generate
higher resolution imaging where possible and provide greater global coverage than
one bin size alone can provide. Maps with globally constant cap sizes are shown in
Supplementary Figs. 4 (depth of discontinuity) and 6 (precursor/SS amplitude

ratio); corresponding histograms for separate bins sizes are given in Supplementary
Figs. 6 and 7.

The data coverage is highly variable depending on bin size (Supplementary
Fig. 14). Supplementary Fig. 8 displays the data coverage for the map of combined
bins (Fig. 3), which shows the maximum geographical sensitivity of the dataset.
The corresponding data coverage for each different bin size is shown in
Supplementary Fig. 11. The significant variation in data coverage between bins of
different sizes is a consequence of the stacking process eliminating bins with
insufficient data. We also note that the combined bin coverage (Fig. 5a) appears
to be poorer than the 15° bin coverage (Supplementary Fig. 9d). This is the
direct result of our iterative method of completing the map; we do not incorporate
larger size bins that overlap the already incorporated smaller bins by more than the
bin radius, since this would result in redundant double counts for some reflectors.

The sensitivity of SS data to horizontal discontinuities is estimated using the
wavelength λ of our filtered data. Discontinuities that occur over radial length
scales of >λ/4 cannot be detected, as they do not generate reflections. For our data
with periods of 15–50 s, this corresponds to approximately 65 km. To calculate this
length scale, we use the central value of the frequency range (23 s) with a mantle
wave velocity of 6 km/s. This indicates that any reflectors we detect must arise from
primarily compositional differences. Thermal gradients generally occur on vertical
length scales on the order of hundreds of kilometres and thus are too gradual to be
observed using SS precursors. However, their presence influences the depths of
mantle discontinuities, causing shallowing or deepening of transitions. Any
extremely large thermal gradients may help to generate reflectors; for example, the
tops of LLSVPs may have some thermal contribution (particularly for the negative
polarity reflectors), although such a gradient must occur across a vertical distance
of <65 km.

Observability of reflectors related to strength and size. We tested the obser-
vability of SS precursors, through exploring the amplitudes of reflections generated
by horizontal reflectors of varying lateral size relative to the bin and impedance
contrast. For this, we used the 2.5-D spectral elements code AxiSEM47, which
generates full wavefield synthetics, incorporating attenuation and other real Earth
effects. AxiSEM is selected as it allows for the incorporation of a 2-D structure;
which permits us to synthesize discrete horizontal reflectors corresponding to our
observations. Here we model the reflectors as regional velocity perturbations to a
background model by introducing a discontinuity without a hardwired velocity
jump at 1000 km.

Using PREM42 as a background model, reflectors of varying lateral size and
shear-wave velocity contrast are placed at 1000 km depth. Within the event-station
geometry, they are located to be centred on the SS bounce point for the reference
stacking epicentral distance of 125° (i.e., 62.5° away from the event). We explore
the influence of both size and strength of the reflectors. Lateral size is varied from 5
to 25°, in increments of 5°, which corresponds to horizontal sizes of 500–2500 km
at 1000 km depth in the mantle. Note that these are absolute lateral sizes of the
reflectors, in contrast to the bins which are described in terms of radius. Since
AxiSEM produces 2-D structures, a lateral reflector with size 25° would comprise
50% of a bin with radius 25°. The shear-wave velocity contrast is introduced as a
positive perturbation with respect to PREM, and we test values from 1% to 5% in
increments of 1%. The contrast is a discontinuous step, and the velocity structure
reverts back to PREM linearly over a depth of 200 km (i.e., so as not to introduce
further complications from additional reflected phases). PREM attenuation is also
included in our synthetic calculations.

Synthetic stations are placed every 1° from 100° to 150° event-receiver
epicentral distance. Since the event location remains static, the theoretical cap size
for the full epicentral distance range is therefore 25° radius (Fig. 7a), which is much
larger than any bin that we employ. The different size reflectors that we introduce
correspond to between 10% and 50% of this bin size, indicating the resolvability of
reflectors with length scales smaller than the bins. The large epicentral distance
range produces high slowness resolution. For completeness, we also stack for the
smaller epicentral distance ranges that correspond to our actual bin size; we test bin
sizes of 15° and 10° radius (Fig. 7b, c). Note that the slowness resolution decreases
with bin size due to employing only one theoretical event for the modelling process;
as a consequence, we do not model bin sizes of 5° or 7.5°.

The synthetic data are processed using the same methods as for the real data,
including aligning on the major SS peak, and stacking into vespagrams. Cross-
sections are taken through the synthetic vespagrams to allow for picking. The
theoretical arrival times of the S1000S reflectors are calculated for PREM42 using
TauP61, which permits for measurement of their theoretical amplitudes even when
the signal cannot be identified visually in the cross-section. Using SAC62, we finally
measure the amplitude ratio of S1000S to SS (Fig. 7).

Data availability. Waveform data were obtained from the IRIS Data Management
Center (NSF grant EAR-1063471). The processed data and measurements are
available from the corresponding author upon request.
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