Seismically determined elastic parameters for Earth's outer core: Supplementary material

Jessica C.E. Irving, ${ }^{1 *}$ Sanne Cottaar, ${ }^{2}$ Vedran Lekić ${ }^{3}$
${ }^{1}$ Dept. of Geosciences, Princeton University, NJ, USA,
${ }^{2}$ Dept. of Earth Sciences, University of Cambridge, UK
${ }^{3}$ Dept. of Geology, University of Maryland, College Park, MD, USA
*To whom correspondence should be addressed; E-mail: jirving @ princeton.edu.

This supplementary material presents details of the Birch-Murnaghan (BM) parameterization and resulting EPOC-BM model (Sections 1 and 2) and details of inversions using a dataset from the PREM study (Section 3) and with STW105 as a base model (Section 4). More background to the EPOC model is given including the prior tests used in the inversion (Section 5), differential travel time calculations for a number of core-sensitive phases allowing the comparison of EPOC to other 1D models (Section 6), and information about the non-linear dependence of the mode center frequencies on the elastic parameters (Section 7). Also presented for reference are the center frequencies and uncertainties of the mode dataset used in the study (Section 8), the outer core velocity and density as a function of depth for the EPOC-Vinet and EPOC-BM models (Section 9).

1 Birch-Murnaghan equation-of-state

The Birch-Murnaghan equation-of-state, to the third order, along an isentrope is used to parameterize the outer core density and velocity and is expressed in the same three parameters as the Vinet EoS: $K_{0 S}$, the bulk modulus at ambient conditions, $K_{0 S}^{\prime}$ the derivative of the bulk
modulus with pressure, and V_{0} the molar volume at ambient conditions. All of these parameters are taken to be at constant entropy. The Birch-Murnaghan EoS formulation (as implemented in BurnMan $(30,32)$) is solved to retrieve molar volume, V, at pressure, P :

$$
\begin{equation*}
P=3 K_{0 S} f(1+2 f)^{5 / 2}\left[1+\frac{3}{2}\left(K_{0 S}^{\prime}-4\right) f\right] \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
f=\frac{1}{2}\left[\left(\frac{V}{V_{0}}\right)^{-2 / 3}-1\right] . \tag{2}
\end{equation*}
$$

Similar to the procedure for the Vinet EoS, we use a fixed molar mass M of $0.05 \mathrm{~kg} / \mathrm{mol}$ to and present results for reference density, ρ_{0}. This is to avoid the inherent trade-offs between molar mass and molar volume. Starting with PREM pressures, the densities and resulting pressures are again iterated until convergence.

The Birch-Murnaghan formulation further defines the isentropic bulk modulus, K_{S} :

$$
\begin{equation*}
K_{S}=(1+2 f)^{5 / 2}\left[K_{0 S}+\left(3 K_{0 S} K_{0 S}^{\prime}-5 K_{0 S}\right) f+\frac{27}{2}\left(K_{0 S} K_{0 S}^{\prime}-4 K_{0 S}\right) f^{2}\right] \tag{3}
\end{equation*}
$$

with which we can compute the bulk sound (outer core P-wave) velocity.

2 EPOC-Birch Murnaghan results

Here we present the mineral physics parameters and figures for the EPOC-Birch Murnaghan model. The velocity and density of the EPOC-BM model are very close to those of EPOCVinet, but the different formulation of the BM EoS means that the values at ambient conditions are markedly different. This is evidenced by the differences between the EoS parameters which fit PREM best for the two different formulations. For example, PREM's reference isentropic bulk modulus, $K_{0 S}$, is 79.7 GPa using the Vinet EoS and 134 GPa using the BM EoS. It is therefore extremely important to use the appropriate EoS when using a particular set of EoS parameters. Doing so leads to the very similar velocity and density models for the outer core shown in tables S3 and S4.

	EPOC-BM	PREM-BM
$K_{0 S}(\mathrm{GPa})$	120	134
Reference isentropic bulk modulus	$(113-126)$	
$K_{0 S}^{\prime}$	4.60	4.46
Pressure derivative of $K_{0 S}$	$(4.55-4.66)$	
$\rho_{0}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	6550	6600
Reference molar density	$(6470-6620)$	
$V_{0}\left(\mathrm{~m}^{-3}\right)$	7.63×10^{-6}	7.57×10^{-6}
Reference molar volume	$\left(7.55 \times 10^{-6}-7.72 \times 10^{-6}\right)$	

Table S1: Elastic parameters for the outer core for the Birch-Murnaghan EoS, and for BirchMurnaghan EoS fits to PREM. Molar density parameters are given for a fixed molar mass of 0.05 kg . The values in brackets encompass two thirds of the parameter ranges, similar to the 1σ range for normally distributed parameters.

Figure S1: Parameter posterior distributions and trade-offs, for the three Birch Murnaghan EoS parameters. ρ_{0} is presented using the fixed molar mass of 0.05 kg and inverted molar volume. The black stars show the median values, used to find the velocity and density models used for the EPOC-BM model in Figure S2.

Figure S2: a) P-wave or bulk sound velocities and b) densities for the EPOC-BM models compared to PREM (orange lines). The models produced by the median parameters are shown as the dark green lines, the shaded region encompasses two thirds of the models and the dashed lines contain 95% of the models.

Figure S3: Relevant physical properties of the EPOC-BM model, with PREM shown for comparison: a) Bullen Parameter and b) squared Brunt-Väisälä frequency as a function of depth; c) Velocity as a function of density - linear behavior is required for models to follow Birch's law. Colours as Figure S2.

3 Inversion using PREM data

Our inversion uses an updated data compilation as well as a different parameterization and inversion procedure compared to the study producing PREM (6). To understand better which of these changes are responsible for differences between EPOC and PREM, we have carried out an inversion using only the modes also used in the construction of PREM. Specifically, we have used the center frequencies from the PREM paper of the 240 modes in our dataset which were also present in the original PREM inversion, avoiding, for example, inner core sensitive modes. We use the errors as assigned in this study. The results of this inversion are shown in Figure S4. We note that body wave data (SKS, PKP, PKIKP and PcP-PKiKP) were also used in the construction of PREM, while in this test, we only consider the modes common to the two inversions.

Figure S4: a) P-wave or bulk sound velocities, and b) densities for EPOC-Vinet (green) compared to PREM (orange lines) and the results of the inversion using data from the PREM study (blue). The models produced by the median parameters for EPOC-Vinet are shown as the dark green lines, the shaded region encompasses two-thirds of the values and the dashed lines 95% of the values at each depth

The results of this test show that both the new data and the inversion method are important in
allowing us to create our new model of outer core structure. Using the old mode measurements leads to a model with a velocity which is very close to that of PREM in the upper outer core - indeed the lines representing PREM and our inversion using PREM data are not easy to tell apart. The velocity difference at the CMB is $0.0145 \mathrm{~km} / \mathrm{s}$. Thus, we conclude that our new data set, which consists of updated mode measurements from more recent observational studies (22-26) and contains modes not measured for the PREM study, is the reason that EPOCVinet has a lower velocity than PREM at the CMB.

The shape of the velocity curve deeper in the outer core, and the density model across the entire outer core are not the same as either PREM or EPOC-Vinet. The velocity in the deeper outer core in our modeling approach is less controlled by the normal mode data set, as inner core sensitive modes are excluded, and the resulting data set has less sensitivity to the deeper outer core (see Figure 5 in the main paper). Velocities at deeper depths are more controlled by the equation of state and therefore by the extrapolation from the constrained velocity gradients at the top of the outer core. The density of this test inversion lies between that of PREM and the EPOC-Vinet model, and at the lower end of the EPOC-Vinet 66% percentile bounds. This illustrates the higher density we find in EPOC-Vinet is not entirely due to the data we use, but could be do to different inversion and parameterization choices between the studies. In the PREM study, density is initially set to fit the Adams-Williamson equation and mass and moment of inertia are included as a constraint in the inversion; either of these might have impacted the final model.

4 Inversion using STW105 for the rest of the Earth

Our inversion is for properties within the outer core; therefore, we assume a fixed model in the mantle and inner core. We partly accommodate this by assigning large error bars to mode center frequencies that are more sensitive to a different model at shallower depths. To further under-

Figure S5: a) P-wave or bulk sound velocities, and b) densities for EPOC-Vinet (green) compared to PREM (orange lines) and the results of the inversion using STW105 to represent structure elsewhere in the Earth (purple). The models produced by the median parameters for EPOCVinet are shown as the dark green lines, the shaded region encompasses two-thirds of the values and the dashed lines 95% of the values at each depth.

The outer core velocity obtained assuming STW105 outside the outer core differs from that in EPOC by up to $0.033 \mathrm{~km} / \mathrm{s}$. The difference is greatest at the CMB , where this model slower than EPOC-Vinet, which is in turn slower than PREM. Near the inner core, this model is faster than both EPOC-Vinet and PREM. In other words, the model's velocity gradient across the outer core is steeper than that in EPOC-Vinet and PREM. The 95\% intervals for the EPOC-Vinet and the STW 105-based velocity models overlap everywhere except at depths $323-576 \mathrm{~km}$ below the CMB; in this region the width of the interval is narrow ($0.009-0.018 \mathrm{~km} / \mathrm{s}$). When STW105
is assumed outside the outer core, the densities obtained are higher than those in EPOC-Vinet throughout, by $0.066-0.100 \mathrm{~g} / \mathrm{cm}^{3}$ from the CMB to ICB respectively. The reduced chi-square misfit is greater for this model than for EPOC-Vinet by 6%. We therefore prefer EPOC-Vinet to this model.

The large error bars on density for EPOC, together with changes in density profiles resulting from changing assumptions about structure outside the outer core, show that density is poorly constrained by mode center frequencies, and sensitive to changes in the mantle. Our results call for the density to be re-evaluated on a global scale. This is beyond the scope of this study, as the parameterization applied here is only a valid assumption for the well-mixed homogeneous outer core. Nevertheless, the fact that densities obtained assuming STW105 outside the outer core are even greater than those of EPOC, and the velocities at the top of the outer core even lower, gives us confidence that the main conclusions of our study, and the distinctive features of EPOC, appear to be robust with respect to an alternative realistic mantle model.

5 Prior geophysical tests

To speed up the Monte Carlo search through the parameter space, we conduct a number of computational inexpensive tests that reject nonphysical models before computing their normal mode eigenfrequencies. Care is taken to ensure that our posterior distribution is not influenced by these prior tests. Firstly, we require that the outer core's mass and MoI must be within 5% of the PREM values. For our final ensemble of models, all of the masses and moments of inertia are are within 3% of PREM, showing that these tests do not affect our parameter distributions. Secondly, we make restrictions on the velocity and density jumps at the CMB and ICB: the outer core's density should be less than that of the inner core; the velocity at the CMB should higher than the shear wave velocity of the mantle; and the velocity at the ICB should be lower than the compressional wave velocity in the inner core. Additionally, models which fail to compute the
presence of at least one of the modes observed in the target frequency window of $0.1-10 \mathrm{mHz}$ are penalized; all of the accepted models produce all of the modes observed.

6 Body wave differential travel time predictions

Here we show the differential travel time predictions, calculated using the TauP toolkit (69) for a range of body wave phase pairs relative to PREM: SKKS-SKS, SKKS-SKKKS, SKKSSKKKKS, SKKKS-SKKKKS and PKIKP-PKP. Of these phases, the SmKS pairs are sensitive to the top of the outer core, while the PKIKP-PKP pair is sensitive to the lower half of the outer core. The relative differential travel time, $r d t_{p h 1-p h 2}$, for a pair of seismic phases, $p h 1$ and $p h 2$, are calculated for a given model, model, in reference to PREM as follows:

$$
\begin{equation*}
r d t_{p h 1-p h 2}=\left(t_{p h 2}^{\text {model }}-t_{p h 1}^{\text {model }}\right)-\left(t_{p h 2}^{P R E M}-t_{p h 1}^{P R E M}\right) \tag{4}
\end{equation*}
$$

Figure S6: Differential travel time predictions for EPOC-Vinet, ak135, iasp91 and SP6 with respect to predictions for PREM. An event depth of 30 km is used.

The predictions of EPOC-Vinet are, for the most part, between those of PREM and the body
wave-derived models. We are only able to calculate these relative differential travel times where both elements of the phase pair exist for both PREM and the model in question; thus we do not specifically address here the ranges over which ray theory can predict the presence of certain body wave phases. Beyond the comparison to the observations from (19) in the main text, these results provide another independent body wave validation of our velocity profile.

7 Non-linearity of center frequencies

In a non-rotating, spherically-symmetric model of the Earth, the center frequencies of normal modes can be computed by integrating a set of differential governing equations, e.g. (37). To first order, Coriolis terms do not affect normal mode center frequencies $(27,70)$. We compute the effects of ellipticity to first order (27), and correct our dataset accordingly, though the corrections are nearly negligible. The relationship between perturbations to the elastic properties of the spherically-symmetric Earth and the resulting perturbation to the center frequencies of normal modes is usually linearized using first order perturbation theory. Indeed, to first order, perturbations to the depth-profiles of elastic parameters can be treated in the self-coupling framework (27). Because the inaccuracy of this linearization can be greater than the uncertainty of the mode center frequencies (order 10^{-3} for many modes used in this work), its use amounts to a degradation of the measurement precision - and thereby the information content of the dataset, e.g. (16). For each mode in our dataset, we compute the center frequency shift due to a 1% change in average v_{p} in the outer core and compare it to the frequency shift predicted by first order perturbation theory. The absolute difference between the two shifts $\left(\Delta \omega_{N L}\right)$ is then compared to the to the measurement uncertainty, which accounts for uncertainties due to mantle structure as described in the main text. Figure 7 shows this comparison, with the size of the symbol proportional to the mode's sensitivity to outer core structure. From this figure, we conclude that even a 1% change in outer core properties can yield non-linear effects compara-
ble to (and for some modes, twice as large as) the observational uncertainty. Therefore, in this study, we treat the relationship between mode center frequencies and elastic parameters of the outer core in a fully non-linear fashion, predicting mode frequencies for each proposed model using Mineos.

Figure S7: Non-linearity of the relationship between mode center frequency and elastic parameters of the core. Each symbol corresponds to a different mode in our dataset, and its size is proportional to the mode's sensitivity to outer core structure (in percent, see legend in upper left). Symbol color represents the magnitude of the non-linearity of mode frequency shift due to a 1% perturbation to outer core v_{p}, compared to measurement uncertainty. NB: measurement uncertainty has been adjusted to account for uncertainties in mantle structure, so this figure shows the lower bound on the magnitude of non-linearity for most modes.

8 Mode dataset

Table 2 presents our center frequency dataset.

Table S2: Radial order (n), angular order (l), center frequency, and 1σ uncertainty (see text). Note that, in order to be conservative in our assessment of effect of unmodelled mantle structure, uncertainties below $3.23 \mu \mathrm{~Hz}$ are increased to $3.23 \mu \mathrm{~Hz}$ in our inversions. The mode frequencies are taken from references (22-26) and have been corrected for ellipticity.

n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$	n	1	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$.
0	5	840.03	0.089	5	17	5668.76	2.319
0	6	1037.56	0.057	5	18	5829.2	2.733
0	7	1230.98	0.04	5	19	5988.49	3.203
0	8	1412.79	0.196	5	20	6152.22	3.755
0	9	1577.53	0.345	5	21	6310.38	4.405
0	10	1725.61	0.415	5	22	6473.56	5.154
0	11	1861.85	0.389	5	23	6635.42	6.002
0	12	1989.68	0.284	5	24	6800.77	6.938
0	13	2111.97	0.121	5	25	6965.93	7.942
0	14	2230.42	0.08	5	26	7132.65	8.987
0	15	2345.41	0.299	5	27	7291.92	10.035
0	16	2457.46	0.523	5	28	7455.35	11.039
0	17	2566.49	0.733	5	29	7616.87	11.948
0	18	2672.42	0.915	5	30	7778.51	12.708
0	19	2776.82	1.058	5	31	7941.77	13.271
0	20	2878.33	1.155	5	32	8099.05	13.595
0	21	2977.45	1.2	5	33	8253.58	13.653
0	22	3074.57	1.192	5	34	8408.99	13.436
0	23	3170.62	1.133	5	35	8570.58	12.945
0	24	3265.58	1.025	5	36	8726.94	12.201
1	3	940.05	0.615	5	37	8884.49	11.232
1	4	1173	0.89	5	38	9043.66	10.079
1	5	1370.22	1.191	5	39	9200.62	8.789
1	6	1521.59	1.192	5	40	9360.48	7.406
1	7	1654.66	1.125	5	41	9509.99	5.981
1	8	1797.95	1.207	5	42	9679.31	4.559
1	9	1962.04	1.372	5	43	9835.76	3.179
1	10	2146.4	1.533	6	9	3965.01	0.335
1	16	3337.68	0.809	6	10	4211.05	0.567
1	17	3493.48	1.553	6	14	5411.01	0.026
1	18	3643.83	2.118	6	15	5601.25	0.688
1	19	3792.31	2.629	6	16	5806.77	1.34
1	20	3940.04	3.107	6	17	6020.74	1.834
1	21	4085.71	3.553	6	18	6235.7	2.143

Continued on next page.

Table S2 - Continued from previous page.

n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$	n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$
1	22	4231.53	3.96	6	19	6446.19	2.225
1	23	4376.3	4.32	6	20	6653.93	2.012
1	24	4521.08	4.628	6	21	6855.24	1.45
1	25	4662.69	4.879	6	22	7050.35	0.545
1	26	4809.15	5.068	6	23	7234.78	0.587
1	27	4952.81	5.194	6	24	7412.52	1.754
1	28	5088.68	5.256	6	25	7588.15	2.763
1	29	5233.05	5.254	6	26	7756.15	3.489
1	30	5373.08	5.189	6	27	7921.95	3.881
1	31	5513.56	5.066	6	28	8088.19	3.948
1	32	5652.38	4.885	6	29	8255.79	3.728
1	33	5788.83	4.653	6	30	8417.22	3.28
1	34	5929.21	4.375	6	31	8588.31	2.672
1	35	6061.84	4.057	6	32	8759.32	1.976
1	36	6195.01	3.707	6	33	8926.92	1.261
1	37	6331.99	3.329	6	34	9092.08	0.589
1	38	6465.35	2.935	6	35	9257.99	0.019
1	39	6594.33	2.531	6	36	9423.84	0.403
1	40	6728.29	2.126	6	37	9598	0.642
2	4	1379.5	0.126	6	38	9760.62	0.667
2	5	1515.22	0.138	6	39	9928.85	0.46
2	6	1681.13	0.108	7	5	3657.53	1.792
2	7	1865.17	0.032	7	6	3955.62	1.743
2	8	2049.48	0.081	7	7	4234.37	1.644
2	9	2228.67	0.056	7	8	4449.41	1.548
2	10	2403.2	0.024	7	9	4614.44	1.469
2	11	2572.35	0.152	7	10	4763.5	1.382
2	12	2737.26	0.321	7	11	4915.5	1.243
2	13	2899.89	0.506	7	12	5069.25	1.01
2	14	3062.36	0.534	7	17	6610.15	4.887
2	27	5746.14	0.21	7	19	6919.81	4.997
2	28	5903.83	0.154	7	20	7077.02	4.683
2	29	6068.16	0.102	7	21	7248.37	4.011
2	30	6228.58	0.046	7	22	7418.74	2.965
2	31	6385.18	0.022	7	23	7593.93	1.64
2	32	6541.11	0.106	7	24	7778.89	0.208
2	33	6697.21	0.21	7	25	7962.79	1.153
2	34	6852.1	0.338	7	26	8154.35	2.325
			25				

Continued on next page.

Table S2 - Continued from previous page.

n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$	n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$
2	35	7011.93	0.494	7	27	8342.33	3.259
2	36	7164.43	0.681	7	28	8521.34	3.945
2	37	7318.57	0.898	7	29	8709.31	4.403
2	38	7473.02	1.15	7	30	8902.55	4.652
2	39	7623.41	1.432	7	31	9089.32	4.72
2	40	7774.96	1.746	7	32	9279.18	4.631
2	41	7921.26	2.087	7	33	9457.48	4.407
2	42	8069.9	2.452	7	34	9636.85	4.066
2	43	8219.56	2.835	7	35	9820.31	3.632
2	44	8360.56	3.23	8	6	4430.29	0.958
2	45	8508.98	3.631	8	7	4646.44	0.658
2	46	8657.04	4.029	8	10	5503.02	1.815
2	47	8807.29	4.416	8	11	5709.54	1.265
3	6	2548.8	1.489	8	21	7976.33	6.275
3	7	2685.77	1.507	8	22	8127.86	6.066
3	8	2819.24	1.54	9	6	4618.87	2.113
3	9	2951.37	1.569	9	8	5138.46	1.628
3	10	3082.1	1.581	9	10	5606.08	3.779
3	11	3219.5	1.565	9	11	5882.36	1.022
3	12	3361.34	1.519	9	12	6183.67	0.341
3	13	3507.53	1.445	9	13	6480.69	0.77
3	14	3656.18	1.349	9	14	6764.72	0.532
3	15	3810.96	1.237	9	15	7025.3	0.917
3	16	3966.83	1.118	9	16	7232.73	3.614
3	17	4124	0.997	9	18	7541.47	5.71
3	18	4283.79	0.878	10	10	6186.46	3.796
3	19	4446.12	0.766	10	11	6446.65	3.225
3	20	4608.97	0.662	10	12	6684.99	3.063
3	21	4771.58	0.567	10	13	6863.78	3.155
3	22	4932.87	0.487	10	15	7198	2.403
3	23	5098.42	0.419	10	16	7420.13	0.764
3	24	5262.95	0.375	10	17	7672.67	0.792
3	41	8823.12	13.45	10	18	7936.4	2.129
3	42	8976.89	14.382	10	19	8196.77	4.498
3	43	9138.26	15.229	10	20	8446.07	8.138
3	44	9290.13	15.98	10	21	8671.34	12.39
3	45	9442.23	16.627	10	22	8864.68	13.948
3	46	9603.46	17.165	11	9	6431.87	1.645
			2				

Continued on next page.

Table S2 - Continued from previous page.

n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$	n	1	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$
3	47	9750.65	17.589	11	10	6705.57	1.034
3	48	9908.13	17.895	11	11	6915	1.005
4	1	1411.79	1.297	11	12	7142.96	1.939
4	2	1721.4	1.278	11	13	7411.49	2.515
4	3	2048.27	1.395	11	14	7679.54	3.086
4	4	2278.3	1.495	11	17	8265	3.765
4	5	2411.12	1.486	11	20	8724.19	1.938
4	10	3864.07	2.114	11	21	8896.97	5.558
4	11	4007.5	1.904	11	22	9103.07	6.432
4	12	4151.99	1.714	11	23	9332.87	4.284
4	13	4292.04	1.516	11	24	9570.49	1.475
4	14	4435.29	1.305	11	25	9808.53	1.267
4	15	4583.99	1.086	12	6	5643.85	5.706
4	16	4729.84	0.862	12	7	5852.44	1.645
4	17	4885.31	0.647	12	11	7133.44	0.318
4	18	5043.65	0.447	12	12	7448.91	0.533
4	19	5200.62	0.271	12	13	7769.84	0.115
4	20	5362.18	0.128	12	14	8090.28	0.918
4	21	5526.06	0.028	12	15	8404.52	4.195
4	22	5694.99	0.021	12	16	8686.69	10.085
4	23	5861.47	0.01	12	17	8928.22	9.561
4	24	6028.66	0.071	13	15	8472.66	1.321
4	25	6197.22	0.23	13	16	8744.85	3.228
4	26	6365.48	0.476	13	17	9053.82	1.481
4	27	6535.53	0.815	13	18	9363.72	0.205
4	28	6702.64	1.253	13	19	9664.49	0.874
4	29	6872.94	1.791	13	20	9954.48	1.593
4	30	7038.1	2.431	14	8	7042.53	0.994
4	31	7204.4	3.171	14	9	7344.52	1.933
4	32	7369.38	4.005	14	13	8729.82	9.31
4	33	7536.5	4.923	14	14	8981.49	10.107
4	34	7700.07	5.916	15	12	8427.73	7.664
4	35	7859.57	6.968	15	15	9592.15	2.328
4	36	8019.94	8.06	15	16	9921.12	3.751
4	37	8184.37	9.175	16	10	8433.36	0.99
4	38	8342.14	10.291	16	11	8730.13	1.451
4	39	8499.51	11.388	16	14	9299.32	0.528
4	40	8663.48	12.424	17	12	9148.44	7.792
			2				

Continued on next page.

Table S2 - Continued from previous page.

n	l	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$	n	1	Center frequency $(\mu \mathrm{Hz})$	$1 \sigma(\mu \mathrm{~Hz})$
5	3	2168.68	1.571	17	13	9428.47	4.947
5	4	2379.18	1.633	17	14	9698.54	2.925
5	5	2703.4	1.889	17	15	9932.67	0.558
5	6	3011.05	2.206	19	11	9644.79	3.53
5	7	3291.65	2.566	6	8	3737.51	0.032
5	8	3525.93	2.702	9	9	5381.54	2.705
5	11	4456.88	0.638	10	8	5735	5.169
5	12	4695.77	0.668	10	9	5938.99	4.693
5	13	4925.5	0.778	12	10	6859.99	1.223
5	14	5134.96	1.063	15	11	8122.41	7.67
5	15	5326.87	1.487	18	9	8735	8.06
5	16	5502.45	1.918				

9 Model values

Here we present models of the velocity and density in the outer core as a function of depth for the EPOC-Vinet and EPOC-BM models (tables S3 and S4 respectively). $Q_{\kappa}=57823$ is used for the outer core for both EPOC-Vinet and EPOC-BM.

Table S3: The EPOC-Vinet model and associated velocity and density ranges.

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66\% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66\% interval $\left(\mathrm{gcm}^{-3}\right)$
2891.00	7.999	9.996	$7.989-8.007$	$9.958-10.036$
2914.05	8.040	10.035	$8.031-8.048$	$9.997-10.075$
2937.09	8.081	10.073	$8.072-8.089$	$10.035-10.114$
2960.14	8.121	10.111	$8.113-8.129$	$10.072-10.152$
2983.18	8.161	10.149	$8.153-8.169$	$10.109-10.190$
3006.23	8.201	10.186	$8.193-8.208$	$10.146-10.227$
3029.28	8.239	10.222	$8.232-8.246$	$10.182-10.264$
3052.32	8.278	10.258	$8.271-8.284$	$10.218-10.301$
3075.37	8.316	10.294	$8.309-8.322$	$10.254-10.337$
3098.41	8.353	10.330	$8.347-8.359$	$10.289-10.372$
3121.46	8.390	10.365	$8.384-8.395$	$10.324-10.408$
3144.51	8.427	10.399	$8.421-8.432$	$10.358-10.443$
3167.55	8.463	10.434	$8.457-8.467$	$10.392-10.477$
			Continued on next page	

Table S3-Continued from previous page

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66% interval $\left(\mathrm{gcm}^{-3}\right)$
3190.60	8.498	10.468	$8.493-8.503$	$10.426-10.512$
3213.64	8.533	10.501	$8.529-8.538$	$10.459-10.546$
3236.69	8.568	10.535	$8.564-8.572$	$10.492-10.579$
3259.73	8.602	10.568	$8.598-8.606$	$10.525-10.612$
3282.78	8.636	10.600	$8.632-8.640$	$10.557-10.645$
3305.83	8.670	10.632	$8.666-8.673$	$10.589-10.678$
3328.87	8.703	10.664	$8.700-8.706$	$10.621-10.710$
3351.92	8.736	10.696	$8.732-8.738$	$10.652-10.742$
3374.96	8.768	10.727	$8.765-8.770$	$10.683-10.773$
3398.01	8.800	10.758	$8.797-8.802$	$10.714-10.804$
3421.06	8.831	10.788	$8.829-8.834$	$10.744-10.835$
3444.10	8.863	10.819	$8.860-8.865$	$10.774-10.866$
3467.15	8.893	10.849	$8.891-8.895$	$10.804-10.896$
3490.19	8.924	10.878	$8.921-8.926$	$10.833-10.926$
3513.24	8.954	10.907	$8.952-8.956$	$10.862-10.955$
3536.29	8.984	10.936	$8.981-8.985$	$10.891-10.984$
3559.33	9.013	10.965	$9.011-9.015$	$10.919-11.013$
3582.38	9.042	10.994	$9.039-9.044$	$10.947-11.042$
3605.42	9.070	11.022	$9.068-9.073$	$10.975-11.070$
3628.47	9.099	11.049	$9.096-9.101$	$11.003-11.098$
3651.52	9.127	11.077	$9.124-9.129$	$11.030-11.126$
3674.56	9.154	11.104	$9.152-9.157$	$11.057-11.153$
3697.61	9.182	11.131	$9.179-9.184$	$11.084-11.181$
3720.65	9.209	11.158	$9.205-9.212$	$11.110-11.208$
3743.70	9.235	11.184	$9.232-9.238$	$11.136-11.234$
3766.74	9.262	11.210	$9.258-9.265$	$11.162-11.260$
3789.79	9.288	11.236	$9.284-9.291$	$11.188-11.286$
3812.84	9.313	11.261	$9.309-9.317$	$11.213-11.312$
3835.88	9.339	11.287	$9.335-9.343$	$11.238-11.338$
3858.93	9.364	11.312	$9.360-9.368$	$11.263-11.363$
3881.97	9.389	11.336	$9.384-9.393$	$11.287-11.388$
3905.02	9.413	11.361	$9.408-9.418$	$11.312-11.412$
3928.07	9.437	11.385	$9.432-9.442$	$11.336-11.437$
3951.11	9.461	11.409	$9.456-9.466$	$11.359-11.461$
3974.16	9.485	11.432	$9.480-9.490$	$11.383-11.485$
3997.20	9.508	11.456	$9.503-9.513$	$11.406-11.508$
4020.25	9.531	11.479	$9.525-9.537$	$11.429-11.531$
				10

Continued on next page

Table S3 - Continued from previous page

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66% interval $\left(\mathrm{gcm}^{-3}\right)$
4043.30	9.554	11.502	$9.548-9.560$	$11.451-11.554$
4066.34	9.576	11.524	$9.570-9.582$	$11.474-11.577$
4089.39	9.599	11.547	$9.592-9.605$	$11.496-11.600$
4112.43	9.620	11.569	$9.614-9.627$	$11.518-11.622$
4135.48	9.642	11.590	$9.635-9.649$	$11.539-11.644$
4158.53	9.663	11.612	$9.657-9.670$	$11.561-11.666$
4181.57	9.685	11.633	$9.678-9.691$	$11.582-11.687$
4204.62	9.705	11.654	$9.698-9.712$	$11.603-11.708$
4227.66	9.726	11.675	$9.719-9.733$	$11.624-11.729$
4250.71	9.746	11.696	$9.739-9.754$	$11.644-11.750$
4273.76	9.766	11.716	$9.758-9.774$	$11.664-11.771$
4296.80	9.786	11.736	$9.778-9.794$	$11.684-11.791$
4319.85	9.805	11.756	$9.797-9.813$	$11.704-11.811$
4342.89	9.825	11.776	$9.816-9.833$	$11.723-11.831$
4365.94	9.844	11.795	$9.835-9.852$	$11.742-11.850$
4388.98	9.862	11.814	$9.854-9.871$	$11.761-11.869$
4412.03	9.881	11.833	$9.872-9.890$	$11.780-11.888$
4435.08	9.899	11.851	$9.890-9.908$	$11.799-11.907$
4458.12	9.917	11.870	$9.908-9.926$	$11.817-11.926$
4481.17	9.935	11.888	$9.926-9.944$	$11.835-11.944$
4504.21	9.952	11.906	$9.943-9.962$	$11.853-11.962$
4527.26	9.970	11.924	$9.960-9.979$	$11.870-11.980$
4550.31	9.987	11.941	$9.977-9.996$	$11.887-11.998$
4573.35	10.003	11.958	$9.994-10.013$	$11.905-12.015$
4596.40	10.020	11.975	$10.010-10.030$	$11.921-12.032$
4619.44	10.036	11.992	$10.026-10.046$	$11.938-12.049$
4642.49	10.052	12.009	$10.042-10.063$	$11.954-12.066$
4665.54	10.068	12.025	$10.058-10.079$	$11.971-12.082$
4688.58	10.084	12.041	$10.073-10.094$	$11.987-12.098$
4711.63	10.099	12.057	$10.089-10.110$	$12.002-12.114$
4734.67	10.114	12.072	$10.104-10.125$	$12.018-12.130$
4757.72	10.129	12.088	$10.118-10.140$	$12.033-12.145$
4780.77	10.144	12.103	$10.133-10.155$	$12.048-12.161$
4803.81	10.158	12.118	$10.147-10.170$	$12.063-12.176$
4826.86	10.173	12.133	$10.161-10.184$	$12.078-12.191$
4849.90	10.187	12.147	$10.175-10.198$	$12.092-12.205$
4872.95	10.201	12.162	$10.189-10.212$	$12.106-12.220$
				$C 0 n t n$

Continued on next page

Table S3 - Continued from previous page

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66\% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66\% interval $\left(\mathrm{gcm}^{-3}\right)$
4895.99	10.214	12.176	$10.202-10.226$	$12.120-12.234$
4919.04	10.227	12.190	$10.216-10.239$	$12.134-12.248$
4942.09	10.241	12.203	$10.229-10.252$	$12.148-12.262$
4965.13	10.254	12.217	$10.241-10.266$	$12.161-12.275$
4988.18	10.266	12.230	$10.254-10.278$	$12.174-12.288$
5011.22	10.279	12.243	$10.266-10.291$	$12.187-12.302$
5034.27	10.291	12.256	$10.279-10.303$	$12.200-12.314$
5057.32	10.303	12.268	$10.291-10.316$	$12.212-12.327$
5080.36	10.315	12.281	$10.302-10.328$	$12.225-12.340$
5103.41	10.327	12.293	$10.314-10.339$	$12.237-12.352$
5126.45	10.338	12.305	$10.325-10.351$	$12.249-12.364$
5149.50	10.349	12.317	$10.336-10.362$	$12.260-12.376$

Table S4: The EPOC-BM model and associated velocity and density ranges.

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66% interval $\left(\mathrm{gcm}^{-3}\right)$
2891.00	8.014	9.997	$8.005-8.024$	$9.958-10.035$
2914.05	8.054	10.035	$8.045-8.063$	$9.996-10.074$
2937.09	8.093	10.074	$8.085-8.102$	$10.034-10.113$
2960.14	8.132	10.111	$8.124-8.141$	$10.071-10.151$
2983.18	8.171	10.149	$8.163-8.179$	$10.108-10.188$
3006.23	8.209	10.186	$8.202-8.217$	$10.145-10.226$
3029.28	8.247	10.222	$8.240-8.254$	$10.181-10.262$
3052.32	8.284	10.258	$8.277-8.291$	$10.217-10.299$
3075.37	8.321	10.294	$8.314-8.327$	$10.253-10.335$
3098.41	8.357	10.330	$8.351-8.363$	$10.288-10.371$
3121.46	8.393	10.365	$8.388-8.399$	$10.322-10.406$
3144.51	8.429	10.399	$8.423-8.434$	$10.357-10.441$
3167.55	8.464	10.434	$8.459-8.469$	$10.391-10.475$
3190.60	8.499	10.467	$8.494-8.504$	$10.425-10.510$
3213.64	8.533	10.501	$8.529-8.538$	$10.458-10.544$
3236.69	8.567	10.534	$8.563-8.572$	$10.491-10.577$
3259.73	8.601	10.567	$8.597-8.605$	$10.524-10.610$
3282.78	8.634	10.600	$8.631-8.638$	$10.556-10.643$
3305.83	8.667	10.632	$8.664-8.671$	$10.588-10.676$
3328.87	8.700	10.664	$8.697-8.703$	$10.619-10.708$
3351.92	8.732	10.696	$8.730-8.735$	$10.651-10.740$
3374.96	8.764	10.727	$8.762-8.767$	$10.682-10.771$
3398.01	8.796	10.758	$8.794-8.799$	$10.712-10.802$
3421.06	8.827	10.788	$8.825-8.830$	$10.743-10.833$
3444.10	8.858	10.819	$8.856-8.861$	$10.773-10.864$
3467.15	8.889	10.849	$8.887-8.891$	$10.802-10.894$
3490.19	8.919	10.878	$8.917-8.921$	$10.832-10.924$
3513.24	8.949	10.907	$8.947-8.951$	$10.861-10.953$
3536.29	8.978	10.937	$8.977-8.981$	$10.890-10.983$
3559.33	9.008	10.965	$9.006-9.010$	$10.918-11.012$
3582.38	9.037	10.994	$9.035-9.039$	$10.946-11.040$
3605.42	9.065	11.022	$9.063-9.068$	$10.974-11.069$
3628.47	9.094	11.050	$9.091-9.096$	$11.002-11.097$
3651.52	9.122	11.077	$9.119-9.124$	$11.029-11.124$
3674.56	9.149	11.104	$9.147-9.152$	$11.056-11.152$
3697.61	9.177	11.131	$9.174-9.180$	$11.083-11.179$
			Continued on next page	
			0	

Table S4 - Continued from previous page

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66% interval $\left(\mathrm{gcm}^{-3}\right)$
3720.65	9.204	11.158	$9.201-9.207$	$11.109-11.206$
3743.70	9.231	11.184	$9.228-9.234$	$11.136-11.233$
3766.74	9.257	11.211	$9.254-9.261$	$11.161-11.259$
3789.79	9.284	11.236	$9.280-9.287$	$11.187-11.285$
3812.84	9.309	11.262	$9.306-9.314$	$11.212-11.311$
3835.88	9.335	11.287	$9.331-9.339$	$11.237-11.336$
3858.93	9.360	11.312	$9.356-9.365$	$11.262-11.361$
3881.97	9.386	11.337	$9.381-9.390$	$11.287-11.386$
3905.02	9.410	11.361	$9.406-9.415$	$11.311-11.411$
3928.07	9.435	11.385	$9.430-9.440$	$11.335-11.435$
3951.11	9.459	11.409	$9.454-9.464$	$11.359-11.459$
3974.16	9.483	11.433	$9.478-9.488$	$11.382-11.483$
3997.20	9.507	11.456	$9.501-9.512$	$11.405-11.507$
4020.25	9.530	11.479	$9.525-9.536$	$11.428-11.530$
4043.30	9.553	11.502	$9.548-9.559$	$11.451-11.553$
4066.34	9.576	11.525	$9.570-9.582$	$11.473-11.576$
4089.39	9.599	11.547	$9.593-9.605$	$11.495-11.598$
4112.43	9.621	11.569	$9.615-9.628$	$11.517-11.620$
4135.48	9.643	11.591	$9.637-9.650$	$11.539-11.642$
4158.53	9.665	11.613	$9.658-9.672$	$11.560-11.664$
4181.57	9.686	11.634	$9.680-9.694$	$11.581-11.685$
4204.62	9.708	11.655	$9.701-9.715$	$11.602-11.707$
4227.66	9.729	11.676	$9.722-9.736$	$11.623-11.728$
4250.71	9.750	11.696	$9.742-9.757$	$11.643-11.748$
4273.76	9.770	11.717	$9.763-9.778$	$11.663-11.769$
4296.80	9.790	11.737	$9.783-9.798$	$11.683-11.789$
4319.85	9.810	11.756	$9.802-9.819$	$11.703-11.809$
4342.89	9.830	11.776	$9.822-9.838$	$11.722-11.829$
4365.94	9.850	11.795	$9.841-9.858$	$11.741-11.848$
4388.98	9.869	11.814	$9.861-9.878$	$11.760-11.867$
4412.03	9.888	11.833	$9.879-9.897$	$11.779-11.886$
4435.08	9.907	11.852	$9.898-9.916$	$11.797-11.905$
4458.12	9.925	11.870	$9.916-9.934$	$11.816-11.924$
4481.17	9.943	11.888	$9.935-9.953$	$11.834-11.942$
4504.21	9.962	11.906	$9.952-9.971$	$11.851-11.960$
4527.26	9.979	11.924	$9.970-9.989$	$11.869-11.978$
4550.31	9.997	11.941	$9.987-10.007$	$11.886-11.995$
				1

Continued on next page

Table S4-Continued from previous page

Depth (km)	Velocity $\left(\mathrm{kms}^{-1}\right)$	Density $\left(\mathrm{gcm}^{-3}\right)$	Velocity 66\% interval $\left(\mathrm{kms}^{-1}\right)$	Density 66% interval $\left(\mathrm{gcm}^{-3}\right)$
4573.35	10.014	11.958	$10.005-10.024$	$11.903-12.013$
4596.40	10.031	11.975	$10.022-10.041$	$11.920-12.030$
4619.44	10.048	11.992	$10.038-10.058$	$11.937-12.047$
4642.49	10.065	12.009	$10.055-10.075$	$11.953-12.063$
4665.54	10.081	12.025	$10.071-10.092$	$11.969-12.080$
4688.58	10.097	12.041	$10.087-10.108$	$11.985-12.096$
4711.63	10.113	12.057	$10.103-10.124$	$12.001-12.112$
4734.67	10.129	12.072	$10.118-10.140$	$12.016-12.127$
4757.72	10.144	12.088	$10.134-10.155$	$12.032-12.143$
4780.77	10.160	12.103	$10.149-10.171$	$12.047-12.158$
4803.81	10.175	12.118	$10.164-10.186$	$12.061-12.173$
4826.86	10.190	12.132	$10.178-10.201$	$12.076-12.188$
4849.90	10.204	12.147	$10.193-10.216$	$12.090-12.203$
4872.95	10.218	12.161	$10.207-10.230$	$12.105-12.217$
4895.99	10.233	12.175	$10.221-10.244$	$12.118-12.231$
4919.04	10.246	12.189	$10.235-10.258$	$12.132-12.245$
4942.09	10.260	12.203	$10.249-10.272$	$12.146-12.259$
4965.13	10.274	12.216	$10.262-10.286$	$12.159-12.272$
4988.18	10.287	12.229	$10.275-10.299$	$12.172-12.285$
5011.22	10.300	12.242	$10.288-10.312$	$12.185-12.298$
5034.27	10.313	12.255	$10.301-10.325$	$12.198-12.311$
5057.32	10.325	12.268	$10.313-10.338$	$12.210-12.324$
5080.36	10.338	12.280	$10.325-10.350$	$12.222-12.336$
5103.41	10.350	12.292	$10.337-10.363$	$12.234-12.348$
5126.45	10.362	12.304	$10.349-10.375$	$12.246-12.360$
5149.50	10.374	12.316	$10.361-10.387$	$12.258-12.372$

