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1. INTRODUCTION

Establishing an absolute lunar impact chronology has important ramifications for
understanding the early structure of the Solar System, to understand the evolution of both the
dynamics and composition of the bodies. Our existing understanding of inner Solar System
chronology is anchored to the crater density and analogy with impact flux rates on the Moon.
The topic of lunar impact history has been the subject of numerous reviews (e.g., Hartmann et
al. 2000; Ryder et al. 2000; Stoffler et al. 2006; Chapman et al. 2007; Fassett and Minton 2013;
Bottke and Norman 2017; Zellner 2017; Hartmann 2019). In this chapter, we focus on examining
new work in the last decade to constrain the lunar impact flux rates enabled by missions like the
Lunar Reconnaissance Orbiter (LRO), the Gravity Recovery and Interior Laboratory (GRAIL),
Chandrayaan-1, SELENE, and the Chang‘E missions, as well as new results from Apollo, Luna,
and meteorite samples made possible by increasingly sophisticated sample analysis techniques.

An important unresolved question is whether the lunar cratering rate declined
monotonically since the Moon’s formation, or whether there was a “terminal lunar cataclysm,”
(generalized to the Solar System as the “late heavy bombardment,”) between about 3.8 and
4.1 Ga ago, where the rate and size of impacts increased to create the large lunar basins in
a short period of time, well after Solar System formation. The possibility of a cataclysmic
bombardment (Wetherill 1975) has been a central concept in planetary sciences since the 1960s,
following detailed geological observations of the Moon and the discovery of petrological and
geochemical evidence for intense shock metamorphism at ~3.9 Ga in many Apollo samples
(Turner et al. 1973; Tera et al. 1974; Stoffler et al. 2006).

The last decade has given us an unprecedented look at the Moon from crust to core that gave
us insight into the existence and structure of lunar basins, their degradation states, and stratigraphic
relationships among them. Yet despite increasingly precise measurements of the isotopic ages
of lunar samples and increasingly detailed geological studies of the lunar surface using high-
resolution imaging, the absolute ages of almost all lunar basins are either unknown or poorly
constrained. Evidence of earlier impacts may be masked in the available samples by the relatively
late Imbrium basin-forming event (Hartmann 1975; Haskin et al. 1998; Chapman et al. 2007).

The heavily cratered terrains of the Moon and other bodies such as Mercury, Mars, and
Callisto also provide clear physical evidence for an elevated flux of impactors across the
Solar System that continued for several hundred million years after the initial accretion and
differentiation of the terrestrial planets (Barr and Canup 2010; Fassett and Minton 2013). The
dynamical models conceived to explain such a phenomenon encompass the gas—dust dynamics
of forming disks and giant planet migration. These models are now invoked to understand not
only our Solar System, but also systems of exoplanets around other stars. Such a phenomenon
would also have affected the Earth at a point when other evidence shows that continents,
oceans, and perhaps even life already existed. Though the high impact rate early in lunar
history declined in the last 3 Ga, the importance of knowing the impact flux in the Earth-Moon
system persists through the Cambrian, affecting evolving life on Earth, and to the present day,
to evaluate the hazards impacts pose to astronauts and spacecraft.

2. THE BASIN-FORMING EPOCH: EVIDENCE FROM SAMPLES

Geologic observations of surface morphology and geophysical data have revealed at least
66 distinct basins and up to a few hundred candidate basins whose surface expressions have
presumably been obscured by subsequent impact resurfacing (Wilhelms 1987; Spudis 1993; Frey
2011; Featherstone et al. 2013; Neumann et al. 2015). Cross-cutting relationships of ejecta and
crater densities allow construction of a relative time-sequence of the basins that have a clear
surface expression (Wilhelms 1987; Fassett et al. 2012). This basin stratigraphy is reasonably well
established, although some significant uncertainties remain that will be discussed later (Table 1).
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Despite increasingly precise measurements of the isotopic ages of lunar samples and
increasingly detailed geological studies of the lunar surface using high-resolution imaging,
the absolute ages of almost all lunar basins are either unknown or poorly constrained. In large
part this reflects our inability to link individual lunar samples with specific basins or craters
with a high degree of confidence. Stoffler et al. (2006) provided a comprehensive summary
of the radiometric dates of lunar samples available at that time and their interpretation of the
ages of key Nectarian and Imbrian basins. Updates to radiometric dates from samples and their
association with basins is discussed in this section and summarized in Figure 1.
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Figure 1. Lunar impact history from absolute ages of returned lunar rocks (billions of years old, or Ga)
and the cumulative frequency of small (>1 km) craters per km? on the surfaces from which the samples
were derived (after Horz et al. 1991). The ellipse for each geologic unit encompasses the range of ages
for returned samples and the uncertainty in crater density counts. Basins and craters are shown in orange
while mare surfaces are shown in blue. The N(1) counts for lunar basins are derived from the N(20) counts
in Fassett et al. (2012) using a scaling factor from Neukum and Ivanov (1994); all other N(1) values are
from Hiesinger et al. (2023, this volume). Absolute ages for the basins reflect the ranges in Table 1, for all
other formations, references are updated from sources in this chapter. The Neukum et al. (2001) Iunar crater
production curve is shown as a reference along with a (gray) envelope of all proposed production functions
(discussed in detail in Hiesinger et al. 2023, this volume). Modeled crater production rates deviate from
the curve representing a constant crater production rate around 4 Ga, implying a higher impact flux at that
time, though the details of the curve are unconstrained at older ages.

2.1. Revisions to major basin ages during the ‘“Late Heavy Bombardment” era

Central to this debate is the role of the Imbrium basin, which is the second largest and one of
the youngest basins on the Moon. Until recently there has been a broad consensus among lunar
geologists about the relationships of samples collected by the Apollo missions to the Imbrium,
Serenitatis, and Nectaris basins. In that view, Apollo 14 sampled primary Imbrium ejecta,
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Table 1. List of lunar basins in stratigraphic order and their radiometric ages

Age (Ga) Age (Ga) Age (Ga)
Basin Name 1974-1990 1991-2006  2009-present
South Pole-Aitken ~4.3-4.05 ~4.3-4.05 4.4(1H-4.0
Serenitatis 4.45(7)-3.86 3.90 >4.1-3.83
Nectaris ~4.2-3.89 3.92-3.89 42 (7)-3.92
Crisium ~4.13-3.80 3.93-3.85 ~3.9(7)
Imbrium ~3.99-3.85 3.85 3.93-3.72
Orientale 3.85-3.72 3.85-3.72 3.93-3.72

Note: Modified from Zellner 2017. Ages are from Nunes et al. (1974), Tera et al. (1974), Arvidson et al. (1976), Cado-
gan and Turner (1976), Drozd et al. (1977), Wilhelms (1987), Ryder (1990), Swindle et al. (1991), Bogard et al. (1994),
Dalyrymple and Ryder (1993, 1996), Hartmann (2000), Ryder et al. (2000), Stoffler and Ryder (2001), Baldwin (2006),
Koeberl (2006) and references therein, Hartmann (2019) and references therein, Norman (2009), Grange et al. (2010),
Spudis et al. (2011), Fassett and Minton (2013), Mercer et al. (2015), and Bottke and Norman (2017) and references therein.

Apollo 17 sampled melt rocks formed by the Serenitatis event, and the Cayley and Descartes units
at the Apollo 16 site were likely to be Imbrium and Nectaris ejecta, respectively (Stoffler et al.
2006). Today, the relationships between impact melt samples and their source basins for Apollo
and Luna sites is still under active debate. The regional physiographic characteristics of the Fra
Mauro formation (Apollo 14) were clearly sculpted by Imbrium, but it has been difficult to identify
specific samples that unequivocally represent primary Imbrium ejecta (Spudis 1993; Stoffler et
al. 2006; Merle et al. 2014). The best available age for Imbrium appears to be 3.92 +0.01! Ga
based on zircon and apatite from KREEP-rich breccias and melt rocks collected at the Apollo 12
and 14 sites (Nemchin et al. 2009; Liu et al. 2012; Snape et al. 2016; Merle et al. 2017).

Serenitatis basin ejecta was targeted for sampling by the Apollo 17 mission with the intent
to date the formation of the Serenitatis basin, which is stratigraphically older than Imbrium and
a key age in the context of understanding the magnitude and duration of the LHB. Attempts
to date the fine-grained Apollo 17 melt rocks returned *’Ar—3°Ar ages that were 20-40 million
years older than the Apollo 14 and 15 breccias that were considered (at the time) as the best
candidates for Imbrium ejecta (Dalrymple and Ryder 1993, 1996). This conclusion supported
the idea that multiple basins formed within a narrow interval of time. However, the gas-release
spectra were complex and the ages depend on weak plateaus (31-36% gas release) that in some
cases were older than those of entrained clasts, which is geologically impossible (Jessberger et
al. 1976; Dalrymple and Ryder 1996). An alternative interpretation is that the Apollo 17 melt
rocks contain excess Ar possibly derived from assimilation of entrained clasts (Jessberger et
al. 1976; Haskin et al. 1998), and, therefore, yield Ar ages marginally older than their primary
formation. Recent studies have confirmed the complex distribution of Ar isotopes in Apollo 17
melt rocks (Mercer et al. 2015). Analysis of Lunar Reconnaissance Orbiter images of boulder
tracks verified that the boulders that were sampled at Apollo 17 originated in outcrops within
the North Massif walls, which had been interpreted as Serenitatis ejecta (Hurwitz and Kring
2016; Schmitt et al. 2017). However, these massifs and the Sculptured Hills deposits may be
more closely related to Imbrium rather than Serenitatis (Spudis et al. 2011; Fassett et al. 2012),
and U-Pb dating of Ca-phosphates in Apollo 17 melt breccias appears to support an Imbrium
basin origin for these rocks (Thiessen et al. 2017; Zhang et al. 2019).

Even more challenging to interpret is the diverse suite of impact breccias and melt rocks
collected at the Apollo 16 site. This mission targeted two regionally significant geological
units with distinct physiography: the Cayley Plains and the Descartes Hills. The Cayley Plains
appears to be related to the Fra Mauro formation (sampled at Apollo 14) and are generally
accepted as Imbrium ejecta, possibly reworked by the addition of material from younger craters

! Ages are reported with significant figures and uncertainty levels in the original sources.
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(Spudis 1993; Korotev 1994; Neukum et al. 2001; Stoffler et al. 2006; Joy et al. 2011). The origin
of the Descartes unit is less certain; both Imbrium and Nectaris ejecta has been proposed (Head
1974; Muehlberger et al. 1980). The question is important because Nectaris is stratigraphically
older than about a third of all of the lunar basins (Table 1), so the age of Nectaris would provide
an important constraint on the timing and duration of the basin-forming epoch and the LHB.

Crystalline melt rocks and rock fragments were collected from the surface of the Cayley
unit, but it is difficult to assign any of these samples to a specific geological unit (Vaniman et
al. 1980; Norman et al. 2006; Fernandes et al. 2013). A set of relatively mafic (~17 wt.% Al,O4
bulk rock composition), poikilitic-textured melt rocks may be the best candidates for primary
Imbrium ejecta (Korotev 1994; Norman et al. 2006). Crystallization ages of these melt rocks
overlap within uncertainty the age inferred above for Imbrium (3.92-3.94 Ga; Stoffler et al.
1985; Norman et al. 2006; Norman et al. 2010), and their high concentrations of incompatible
lithophile elements are consistent with a source in the Procellarum-KREEP Terrane. Other
suites of Apollo 16 rocks contain impact-affected lithologies that are plausibly related to
smaller, post-Imbrium craters (D <300 km) in crustal terranes proximal to the Apollo 16 site
(Niihara et al. 2019;Joy et al. 2020b).

More contentious is the geological significance of the Descartes unit, which has been
interpreted as either Imbrium or Nectaris ejecta (Muehlberger et al. 1980; James 1981).
The Descartes breccias differ from their Cayley counterparts in having lower-grade, fragmental
or shock-metamorphosed matrices and highly aluminous (28-30 wt.% Al,O;) compositions
with low concentrations of incompatible trace elements. Such compositions are similar to the
feldspathic crust around Nectaris and contrast with the Procellarum-KREEP Terrane (Jolliff et
al. 2000). James (1981) proposed an age of ~3.9 Ga for Nectaris, which would provide strong
support for the terminal lunar cataclysm hypothesis. However, subsequent studies showed that the
youngest population of clasts in the Descartes breccias is coeval with the KREEP-rich, crystalline
melt rocks that are the best candidates for Imbrium ejecta, supporting geological observations
that favor emplacement of the Descartes breccias as Imbrium ejecta. Interpreting the Descartes
breccias as Imbrium ejecta removes the strongest argument for a young formation age of the
Nectaris basin; without a young age for Nectaris, the constraint that all basins stratigraphically
between Nectaris and Imbrium formed in a short window of time is significantly weakened,
pulling the pin on the terminal lunar cataclysm (Table 1; Norman 2009; Norman et al. 2010).

The Descartes breccias are also intriguing because their low metamorphic grade has
preserved evidence for earlier basin-scale impacts. Detailed petrologic, geochemical, and
isotopic studies of a feldspathic lithology extracted from the Descartes breccia provide
evidence for a basin-scale impact event at 4.22 +0.01 Ga, which may have been destroyed or
obscured by Imbrium (Norman and Nemchin 2014; Norman et al. 2016). The “°Ar—*°Ar ages
of 4.1-4.2 Ga that are commonly observed in clasts and regolith pebbles around North Ray
Crater (Maurer et al. 1978; Norman et al. 2010; Shuster et al. 2010; Fernandes et al. 2013) may
reflect this putative pre-Imbrium basin rather than Nectaris (Norman et al. 2016).

Crisium is a multi-ring impact basin of Nectarian age, located in the northeastern portion of
the lunar nearside (Head et al. 1978). Luna 24 succeeded in returning a 170-gram sample from
Mare Crisium in 1976, which included a low-Ti basalt that is among the lowest Ti of any lunar
basalt sampled. Luna 20 returned 55 g of samples from the highlands between Mare Fecunditatis
and Mare Crisium. Among them were fragments interpreted to be Crisium impact melt, with
radiometric ages ranging from ~3.84 Ga (Cadogan and Turner 1977; Stettler and Albarede 1978)
to 3895 £17 Ma (Swindle et al. 1991). Additional ages for low-KREEP troctolites in the Luna 20
sample are 4191 +£22 Ma and 4189 +8 Ma (Cohen et al. 2001). Updated Apollo 17 sample ages,
also interpreted as representing Crisium impact-melt rocks, range from 3.88 to 3.93 Ga (Schmitt
et al. 2017). While there is no agreement on which samples represent Crisium impact melt, the
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crater density on Crisium ejecta yields a model age of 3.99 Ga (Neukum 1984) and crater size—
frequency distributions on the impact-melt deposits identified by Spudis and Sliz (2017) yields
a younger age for the Crisium basin at 3.85-3.87 Ga (van der Bogert et al. 2017). It should be
noted that there is significant uncertainty in ages modeled on production functions, depending on
what constraints are assumed on terrains older than the mare surfaces (see Hiesinger et al. 2023,
this volume). Wilhelms (1987) placed Crisium between Nectaris and Serenitatis, however, the
uncertainty in the age of the Serenitatis basin does not help constrain the age of the Crisium basin.

In summary, current data provide compelling evidence that the basin-forming epoch
extended back in time to at least 4.2 Ga and possibly earlier. The strong version of the terminal
lunar cataclysm hypothesis in which all of the lunar basins formed within a brief interval
(200 Ma; Ryder 2002) may be excluded as a viable hypothesis; however, samples do provide
evidence for formation of multiple nearside basins in the period between 4.2 and 3.85 Ga even
though the onset of the basin-forming epoch is still unconstrained. Imbrium ejecta appear to
be more widespread on the lunar nearside than appreciated previously, and the perception of
a terminal lunar cataclysm may have been biased by repeated (albeit unintentional) sampling
of Imbrium ejecta at the various Apollo landing sites (Schaeffer and Schaeffer 1977; Haskin
et al. 1998; Norman et al. 2010). Compositional variations within Imbrium ejecta may reflect
complexities in radial ejecta distributions and the complex geology produced by such large
events for which we have no terrestrial analogues. The lack of absolute ages, especially for
the older lunar basins, and solid constraints on the mass vs. time flux of impactors across the
inner Solar System, is a significant impediment to understanding the dynamical mechanisms
that might have contributed to forming the lunar basins.

2.2. Evidence for earlier major impact events

Lunar samples interpreted to contain indirect evidence for ancient impact events is rarer
than direct dating of impact-melt rocks. The interpretation of chronological data as representing
impacts is based heavily on (i) the identification of textural and chemical characteristics of
the analyzed rocks (or rock clasts found in the lunar breccia samples) that point towards
an origin of these rocks/clasts as impact melts (Norman 2009) and (ii) the recognition of
internal features found in some lunar zircon grains that formed as a result of impact related
modification of zircon (e.g., Cavosie et al. 2015). In some cases, lunar zircon grains show two
consistently different ages linked to different internal features (Pidgeon et al. 2007; Nemchin
et al. 2009; Bellucci et al. 2016). Additionally, exploiting the low closure temperature of some
chronometers such as ¥ Ar—*Ar in plutonic rocks has started to gain momentum (Shuster et al.
2010; Cassata et al. 2017). The main premise of this work is based on the assumption that the
radiometric systems remain open for diffusion of daughter isotopes in the deep-seated plutonic
rocks and require impact excavation to start the radiometric clock, thereby enabling dating of
the major, possibly basin size, impact events.

In the terrestrial rocks, are several types of internal structures in the zircons that are directly
linked to impacts (Timms et al. 2012). Some of these structures, such as planar deformation
features (PDFs), twin and reidite lamellae, are too thin to be suitable for age determination,
while others, for example deformation bands commonly show partial resetting of the U-Pb
system (Cavosie et al. 2015). Only one type of impact related internal structure, granular
zircon, has been shown to consistently determine impact ages in terrestrial rocks (e.g., Kenny
etal. 2017). All of these internal features, with the exception of reidite, have been identified in
lunar zircon grains as well (Crow et al. 2017).

In addition to the impact features known from the studies of terrestrial zircon, internal
structures linked to impacts have been recognized in some lunar zircon grains, but which
have not been found in terrestrial impact structures. For example, a complex zircon aggregate
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consisting of crystalline fragments surrounded by amorphous zircon “matrix” appears in an
anorthosite clast from the breccia sample 73235. The “matrix zircon” was interpreted to represent
a complete resetting of the U-Pb system during an impact and gave an age of 4187+11 Ma,
one hundred million years younger than the age of the fragments (Smith et al. 1986; Pidgeon
et al. 2007; Bellucci et al. 2016). Another example is represented by a large (600 mm) zircon
fragment from the breccia 72215 (Nemchin et al. 2009), which shows a recrystallization rim
with an age of 4334+10 Ma, significantly younger than the rest of the grain. Amorphous
domains in the zircon from 73235 appear to form as a result of localized shock experienced
by the grain during an impact, while the recrystallization rim in the grain from 72215 is likely
to be a result of a prolonged heating in an impact ejecta blanket. Both features were identified
as being impact-related in the lunar grains because of their marked age difference compared
with other parts of the same grains and the assumed general lack of metamorphism and fluid
induced alteration processes on the Moon. On Earth, similar internal structures may be created
by metamorphic growth or radiation damage of U-rich parts of the grains.

The majority of lunar zircon grains, which are fragments found in breccia matrices, appear
to be internally uniform and yield a single U-Pb age from multiple analyses. These ages are
commonly interpreted as crystallization ages, but this interpretation remains ambiguous, as
they may also represent the impact-reset ages from within larger, more complex grains broken
apart during incorporation into their host breccias. Some of these fragments may also represent
crystallization as a result of solidification of an impact melt, as in the case of zircon from
sample 73217, which gave an age of 4335+5 Ma (Grange et al. 2009). Though investigation
of breccia grains does not provide definitive information regarding the size of these impacts,
evidence of large (potentially basin-sized) impacts may be gained from zircon -related minerals
in rocks derived from thick impact-melt sheets, for example, zirconolite yielded a Pb—Pb age
of 4.22+0.01 Ga in the coarse-grained lunar melt rock 67955, and microstructural evidence of
high temperatures was recorded in 4.328 + 8§ Myr baddeleyite in troctolite 76535 (Norman and
Nemchin 2014; White et al. 2020).

While the majority of 3’ Ar—*°Ar ages represent the period of the late heavy bombardment
(Section 2.1), there are numerous examples of older, impact-affected Ar—Ar sample ages
obtained from Apollo 15, 16 and 17 sites and lunar meteorites (Shuster et al. 2010; Fernandes
et al. 2013; Michael et al. 2018). However, of the rocks that have been investigated in
combination with multiple chronometers, the *Ar—*°Ar ages are slightly younger than
Sm-Nd, Rb-Sr, and U-Pb ages obtained on the same sample (Bouvier et al. 2015; Thiessen et
al. 2017). While impact resetting may be a potential explanation for post-crystallization 3 Ar—
40Ar ages, other processes such as conductive cooling in the crust and magmatic overprints
may play a role (Boehnke and Harrison 2016). 3 Ar—*’Ar thermochronometry offers means to
assess whether ages obtained from exhumed crustal rocks can be ascribed to impact events,
as well as potentially the size of the impact event responsible for resetting the Ar system.
Detailed thermochronometry and modeling efforts have been used to examine multiple basin-
sized impact events prior to 4.0 Ga, based on the basins’ ability to exhume samples from deep
within the lunar crust (Garrick-Bethell et al. 2009, 2020; Cassata et al. 2017).

Although the number of ages older than the proposed start time of the late heavy
bombardment obtained by studies of lunar samples is limited, they appear to represent impact
events around 4.2 and 4.3 Ga. Several lines of evidence support this, including the presence of
large (>10 pum) neoblasts in some lunar zircon grains, which on Earth are commonly associated
with mafic impact melts and the crater floor rocks in large (~250 km) impact structures, zircons
and related minerals with old, impact-related ages, and ¥ Ar—**Ar ages of some plutonic rocks
representing their extraction from significant depths in the lunar crust. Assigning these ages to
specific impact structures is, however, tenuous on the basis of currently existing data.
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2.3. Sample constraints from non-Apollo sources

Lunar meteorites provide another source of information about impact history from
locations potentially far removed from Imbrium (Joy et al. 2023, this volume). Many lunar
meteorites are regolith breccias that carry clasts of impact melt rocks. Although relatively
few crystallization ages have been determined for these melt rock clasts, their distribution
is broadly similar to that inferred from the Apollo samples and crater density studies of
the lunar surface, with the oldest apparent ages around ~4.2 Ga, a peak at ~3.7 Ga, and a
declining number of ages to ~2.5 Ga (Cohen et al. 2000, 2005; Joy and Arai 2013). As many
of the feldspathic lunar meteorites are regolith breccias, the longer tail to younger ages in
the meteorite clasts compared to the Apollo melt rocks may reflect smaller or more localized
impact events than the basins sampled by the Apollo sites (Fig. 2).
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Figure 2. Radiometric ages for impact-affected lunar samples. Data from Zellner (2017), updated with
sources in this chapter.

Additional constraints come from impact ages of meteorites derived from asteroid
parent bodies (Fig. 2), largely based on “°’Ar—*Ar data and U-Pb isotopic compositions of
phosphates, as these systems are sensitive to relatively low-temperature events (reviewed
in Bogard 2011; Jourdan 2012; Swindle et al. 2014). H-chondrites show a prominent group
of reported “°Ar—*°Ar ages between ~3.5 and 4.0 Ga, with the clast-poor, impact-melt rocks
La Paz (LAP) 02240 and LAP 031125 yielding especially well-defined plateau ages of
3.939+0.062 Ga and 3.942 + 0.023 Ga, respectively (Swindle et al. 2009, 2014). Eucrites and
howardites, believed to come from the asteroid 4 Vesta, have also yielded numerous impact-
caused Ar ages between 3.4 and 4.1 Ga, with groups of ages at ~3.5 and 3.8-4.0 Ga, and
few such ages between 4.1 and 4.5 Ga (Bogard 2011; Cohen 2013; Kennedy et al. 2013).
The impact-melt clasts in howardites must have formed by high-velocity collisions (Cohen
2013; Marchi et al. 2013). Mesosiderites commonly yield Ar ages of 3.8 to 4.1 Ga, with a
mean age of 3.94+0.1 Ga for the 19 samples considered by Bogard (2011), although the very
slow cooling experienced by these meteorites following disruption and re-accretion of their
parent body complicates the interpretation of these data.

Few rocks older than 3.9 Ga exist on the Earth, so samples from the basin epoch are
scarce. Detrital zircon grains identified in 3.3 Ga metasediments found in the Jack Hills of
Western Australia, have a broad abundance peak between 3.9 and 4.2 Ga, with a maximum at
4.1 Ga (Blichert-Toft and Albarede 2008; Harrison 2009; Holden et al. 2009). Possible links
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between thermal events in these zircons and impacts between 4.1-3.9 Ga have been proposed
(Trail et al. 2007; Abbott et al. 2012; Bell and Harrison 2013; Marchi et al. 2014), though
there is some debate as to whether the zircons crystallized from wet, minimum-melt granites
or impact-produced melt sheets (Harrison 2009; Kenny et al. 2017). Multiple impact-produced
spherule beds have been found in terrestrial Archean and early Proterozoic terrains (Lowe et
al. 2003; Simonson and Glass 2004). Models of Earth impactors and spherule formation yields
size—frequency distributions for the expected spherule population similar to those observed,
with an overall age distribution corresponding to the formation on the Earth of 70 to 80 craters
with D > 150 km between 1.7 and 3.7 Ga (Bottke et al. 2012; Johnson and Melosh 2012).
Given that the Earth has a gravitational cross section ~20x that of the Moon, these constraints
would explain four such craters on the Moon formed in the period 3.0 to 3.7 Ga. Collectively,
they suggest the LHB had a long-lived tail that potentially lasted down to ~2 Ga on Earth
for Chicxulub-sized impact events, consistent with the distribution of impact ages in lunar
meteorites (Cohen et al. 2000, 2005; Joy and Arai 2013).

2.4. Sources of lunar impactors

Establishing the sources of and changes in impactor populations responsible for basin and
post-basin impact events provides critical constraints for understanding the causes of enhanced
impact flux and for helping to develop models of the Solar System’s dynamical evolution
(see Section 4). Estimates of the proportion of material added to the Moon by impactors in
the epoch of basin formation are in the range of 0.05 to 0.005% of the Moon’s total mass,
much smaller than the amount of material added to the Earth and Moon during the late veneer
immediately following formation (Morgan et al. 2001; Morbidelli et al. 2012b; Marchi et
al. 2014; Walker et al. 2015). Such impactors could include a wide variety of asteroid types,
comets and planetary materials (including the possibility of Earth ejected debris; Armstrong
et al. 2002; Crawford et al. 2008; Armstrong 2010) and the dust derived from any of these
sources. The types of asteroids that are sampled at the present day on Earth as meteorites, or
the proportion between cometary bodies and near Earth-cross asteroids, may not necessarily
be similar to those that were responsible for the impact basins and craters on the Moon in the
basin-forming epoch. Recent review papers on the topic of impactor sources are provided by
Walker et al. (2015) and Joy et al. (2016).

Evidence for the parent-bodies of lunar basin-forming impactors comes from a combination
of petrological, geochemical and isotopic studies of lunar samples (Morgan et al. 1972, 1974;
Korotev 1987; James 1996; Kring and Cohen 2002; Norman et al. 2002; Puchtel et al. 2008;
Fischer-Godde and Becker 2012; Joy et al. 2012 ; Sharp et al. 2014; Liu et al. 2015; Walker et
al. 2015; GleiBner and Becker 2017, 2019; Mclntosh et al. 2020) coupled to remote sensing
observations of lunar crater size density populations (Strom et al. 2005; Marchi et al. 2012).

Highly siderophile element (HSE) and isotopic analyses of impact melt breccias of known
age provide indirect chemical fingerprinting of ancient impactors that have been mixed with
lunar target rocks (Walker et al. 2015). There are potential complications involved in closed
system fractionation of metallic phases in silicate melt systems (Gleiner and Becker 2017),
but analysis of multiple aliquots of the same sample can be used to mitigate these effects
and infer the impactor composition. The fingerprints of these impactors have a range of
HSE compositions. Data from Apollo 14, 15, 16 and 17 impact melts (along with one lunar
meteorite) imply that projectile compositions in the basin-forming epoch were often more
fractionated relative to the HSE signatures that were added during the late veneer accretion
(Walker et al. 2015; Day et al. 2016) and they are also not identical to the main types of
ordinary chondrites meteorites that we have in the present-day meteorite population (Liu et al.
2015; Walker et al. 2015). The impactors range from those that were compositionally similar
to primitive chondritic asteroids and those that were from differentiated planetary embryo
cores (Kring and Cohen 2002; Fischer-Godde and Becker 2012; Walker et al. 2015; Gleifiner
and Becker 2017). Notably non-chondritic signatures (superchonditic HSE/Ir and enrichment
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of Ru relative to Pt) are reported in Apollo 16 samples, consistent with high abundances of iron
meteorite-like metal frequently observed in the Apollo 16 lunar regolith and impact breccias
(Korotev 1987). This implies that a planetary embryo core material may be responsible for
the Imbrium impact event collision, although as Walker et al. (2015) note, this final Imbrium
impactor event added only a very limited HSE contribution to the generated impact melts. It
is highly likely that mixing also occurred between these different components during melting
of earlier ejecta deposits (GleiBiner and Becker 2017); indeed, some metamorphic granulitic
samples, that are thought to represent older impact materials, have chemical signatures that
are more akin to some ordinary and carbonaceous chondrite meteorites types (Fischer-Godde
and Becker 2012; Walker et al. 2015). Although HSE contents and relative isotope abundances
have not yet been determined for comets, the lunar impactor types inferred by these HSE
methods are compositionally distinct from the types of primitive carbonaceous chondrites
thought to be most akin to cometary materials (i.e., the CM or CI or Tagish Lake meteorite
types; Brandon et al. 2005; Liu et al. 2015).

Fragments of exogenous contributions to the lunar regolith provide more direct evidence of
the types of small bodies striking the Moon at different times (Armstrong et al. 2002; Chapman
2002; Rubin 2012; Joy et al. 2012, 2016, 2020a). The survivability of different types of projectiles
on the Moon varies, controlled by such factors as impact velocity, where long and short period
comets typically have higher collisional speeds (>20 km/s) compared with those of asteroids
(~18 km/s on average). These velocities may have been different in the past than at the present
day as the Moon was closer in orbit to the Earth’s gravity well (Marchi et al. 2012). Other factors
contributing to projectile survival include impact angle, where trajectories of <10° potentially
account for higher survival rates (Pierazzo and Melosh 2000; Svetsov and Shuvalov 2015;
Schultz and Crawford 2016); target material properties, as more porous target rocks may buffer
impacts and enhance survival (Nagaoka et al. 2014; Svetsov and Shuvalov 2015; Avdellidou et al.
2016; Daly and Schultz 2016); and impactor physical properties, where volatile-rich projectiles
like comets will lose much of their water and hydrated mineral components in the vapor plume
(Artemieva et al. 2008; Ong et al. 2010; Svetsov and Shuvalov 2015).

To date only mm to sub-mm sized meteorite silicate and metal meteorite fragments have
been found in lunar regolith samples (Joy et al. 2016) and, given the constraints of what we
know of comets from silicate phases collected by the Stardust mission and stratospheric
interplanetary dust particles (IDPs), no cometary silicate debris has been directly identified
in lunar regolith samples. Our best view to the basin-forming epoch surface regolith record,
where such an archive potentially resides, are through the “ancient” regolith breccias formed
from soils >3.5 Ga (McKay et al. 1986; Joy et al. 2011). However, our geographic view is
limited to samples from the Apollo 16 landing site (McKay et al. 1986; Joy et al. 2011, 2012;
Fagan et al. 2014). The Apollo 16 ancient regolith breccias have so far only yielded only
small ultramafic magnesian relics, which are chemically distinct from lunar materials, and
may represent silicate debris from primitive chondritic meteorites (Joy et al. 2012).

The collective evidence from detection of primitive chondritic projectile relics in ancient
Apollo 16 regolith breccias and HSE analyses of impact melt samples supports the likelihood
that asteroid-type projectiles were delivered to the Moon in the latter stages of the basin-
forming epoch and, therefore, favors models involving leftover planetesimals of the terrestrial
planet region or asteroid collisions rather than comets or Kuiper belt objects (Kring and Cohen
2002; Norman et al. 2006; Walker et al. 2015). This observation is bolstered by observations
that that that the current population of craters is consistent with asteroidal sources (Werner et
al. 2002; Morota et al. 2008). However, there is a need to expand our knowledge base across
the lunar surface; future lunar regolith research and exploration should make efforts to identify
evidence for such impactors in order to chemically and isotopically identify their parent bodies.



Impact History of the Moon 383

3. THE BASIN-FORMING EPOCH: STRATIGRAPHIC RELATIONSHIPS

Establishing the sequence of lunar basins is important, since basin ejecta are critical markers
in the stratigraphic framework for the Moon (Shoemaker et al. 1962). Basin relationships
on the Moon’s surface were established by geologic mapping between the early 1960s and
mid-1980s and are summarized by (Wilhelms 1987). The ejecta and secondary craters from
large, ~1000 km diameter basins like Imbrium or Orientale modified the surrounding crust at a
hemispheric scale (Head et al. 2010). Smaller ~300-500-km impact basins have more regional
effects, but form more frequently, so their stratigraphy is important as well. In conjunction
with absolute ages derived from samples, constraining the stratigraphy of lunar basins can
illuminate the impactor flux early in the inner Solar System. The methodology for using remote
sensing data to untangle the sequence of basins relies on three main categories of observations:
superposition and cross-cutting relationships, crater counting, and basin degradation state. The
last decade of observations from LRO, GRAIL, and other missions has enabled progress on
basin stratigraphy using each of these techniques.

The Lunar Orbiter Laser Altimeter (LOLA) in LRO and the GRAIL mission have created
the basis for a global assessment of the crustal structure of the Moon and the history of
impact structures with diameters exceeding ~200 km, including impact basins (Wieczorek
et al. 2013; Zuber et al. 2013; Neumann et al. 2015; Smith et al. 2017). The impact process
and subsequent gravitational rebound excavates and redistributes the lunar crust, leaving a
characteristic signature of central thinning and peripheral thickening. Depending on the degree
of isostatic relaxation and subsequent infilling, the resulting central free-air gravity signature
may be strongly positive (mascons) or somewhat negative. However, a bandpassed Bouguer
anomaly map (Fig. 3) shows a positive central anomaly indicating mantle uplift and thinned
crust, usually encircled by an annular region of thickened crust resulting from processes within
the transient cavity. As an example, the original cavity wall was not preserved in any of the
topographic rings exposed at the surface of the Orientale multi-ring basin, but the size of such
basins may be estimated from the diameter of the central Bouguer high, even in the most
degraded cases where the main topographic rim can no longer be identified (Zuber et al. 2016).
The size can be related by scaling laws to the original impact energy and thus the history and
chronology of impact basins constrains dynamical models of the early Solar System, and to
some extent, target thermal structure (Melosh 1989; Miljkovi¢ et al. 2013; Baker et al. 2016).
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Figure 3. GRAIL Bouguer gravity anomaly map bandpassed from spherical harmonic degree 6-600 to
emphasize basins, from Neumann et al. (2015) CC-BY-NC.
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The GRAIL gravity data have provided substantial new clarity about what basins exist
and the size of individual basins over the entire lunar surface. (Neumann et al. 2015) cataloged
43 basins with diameters greater than 300 km (Fig. 4), more than conservative estimates from
LOLA data but fewer than some other pre-GRAIL estimates suggested (Frey 2011; Fassett
et al. 2012; Featherstone et al. 2013). Previously-identified basins classified as “probable”
or “uncertain” were relocated, downsized or eliminated while some new basins were added
or confirmed on the basis of their clear gravity signature. In some cases, basin sizes were
substantially revised. The population of basins with diameters less than 200 km is fitted
well with the existing cumulative Hartmann—Neukum production function, but this function
underestimates the basin population with diameters between 300 and 1000 km. Efforts to
resolve impacts that have almost fully relaxed, have unusual gravity signatures, or have been
buried under mare deposits, have turned up a few smaller proposed basins but do not generate
overwhelming changes in the size—frequency distribution (Ishihara et al. 2011; Schultz and
Crawford 2016; Sood et al. 2017). The cumulative distribution of basins D > 300 km has grown
only slightly, not supporting models of impactors with a size distribution of the main asteroid
belt (Strom et al. 2005); it is unlikely that the lunar surface could have been bombarded by
enough main belt asteroids to produce the observed number of D > 90 km craters without
producing many basins larger than Imbrium (Marchi et al. 2009; Minton et al. 2015).
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Figure 4. Strom’s (2005) asteroid belt population size distribution (squares) aligned to match the R-plot

density of GRAIL-determined basins (circles) at a diameter of 200 km, and the LOLA-derived (Head et al.
2010) catalog prior to GRAIL (diamonds and gray field). Adapted from Neumann et al. (2015) CC-BY-NC.

Crustal thickness maps of the Moon have revealed more large impact basins on the nearside
hemisphere of the Moon than on its farside. One possible explanation for this asymmetry
is differences in crustal properties (particularly temperature) at the time the basins formed
(Miljkovi¢ et al. 2013). However, the global asymmetry is still under debate, as the gravitational
structure of the most ancient structures may be severely overprinted or completely absent.
Some elongated gravity signatures or lineated features in topography have been proposed to
represent fragments of oblique impact bodies rather than separate impact basins (Wichman and
Schultz 1992; Schultz and Crawford 2016), while others hold that nearly-coincident impact
structures may have been emplaced in different eras (Ishihara et al. 2011).

Measurements of the superposed crater population of basins are used to order the basin
sequence (Hartmann and Wood 1971; Fassett et al. 2012; Fassett 2016). The main limiting
factors in using this technique are that basins have a limited surface area, effects of later
resurfacing can erase superposed craters (including deposition of maria), and uncertainties about
the contribution of secondary craters (Hiesinger et al. 2023, this volume). Fassett et al. (2012)
used LRO images and topography to re-examine both the relative stratigraphy and the crater
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statistics of >20 km craters superposed on 30 lunar basins larger than 300 km. Along with
a substantially improved basemap for crater analysis, the Fassett et al. (2012) study used a
buffered crater counting approach to partially counteract the effects of later resurfacing of
basins by maria. The major conclusion from that study was that the “standard” sequence of
lunar basins developed by Wilhelms (1987) was qualitatively supported, although there were
many more superposed craters on these basins than was originally recognized.

A major question reinvigorated by recent mission data has been the relative stratigraphic
position of the Serenitatis basin. The highlands materials sampled at the Apollo 17 landing
site were located at the most prominent Serenitatis ring, so its samples were used to argue
that Serenitatis must be relatively young (i.e., Nectarian in age, slightly older than Imbrium;
see Section 2.1). Spudis et al. (2011) used LROC data to re-examine the morphology of
the Sculptured Hills from which the Apollo 17 samples are collected, making the argument
that the Sculptured Hills are likely Imbrium ejecta rather than Serenitatis ejecta. Moreover,
they point out that the numerous large craters on the eastern Serenitatis rim would be more
consistent with an older pre-Nectarian age, an argument also supported by Fassett et al. (2012).
If correct, this would mean that the presumed connection between the Apollo 17 samples and
Serenitatis is incorrect. On the other hand, Evans et al. (2016) used GRAIL data to search
for craters that formed after Serenitatis (and other basins) that were then buried by mare, and
found that Serenitatis had relatively few buried superposed craters 290 km. This supports the
original interpretation that Serenitatis is Nectarian in age. This particular region of the Moon is
challenging for basin stratigraphy based on either cross-cutting relationships or visible crater
statistics, because Imbrium basin’s ejecta influenced the surrounding region so profoundly.

The relative degradation state between basins is also an indicator of their relative age. This
arises because the topography, morphology, and interior structure of younger basins are less
modified by later processes compared to those of older basins. Developing the sequence of basins
based on their apparent morphological degradation state has been attempted using Lunar Orbiter
observations (Stuart-Alexander and Howard 1970) and has also been extended to analyzing the
gravity signature of basins to show that the crustal thickness contrast between the interior of a
basin and its surroundings decreases with age (Neumann et al. 1996; Kamata et al. 2015; Conrad
et al. 2016). The implication of these studies is that during the pre-Nectarian epoch, basin
relaxation was an important process. Additionally, the nearside hemisphere is dominated by
the Procellarum region, a 3,200-km diameter quasi-circular tectonomagmatic feature (Andrews-
Hanna et al. 2014). The unique thermal history of the Procellarum region likely modified or
erased ancient nearside basins, also potentially accounting for the paucity of lunar impact-melt
rocks older than 4.2 Ga in the nearside lunar sample collections (see Section 2.1).

4. DYNAMICAL MODELS FOR THE BASIN-FORMING EVENTS

There are two major classes of dynamical scenarios that are frequently invoked to
describe early bombardment of the Moon. Both assume that lunar bombardment is not merely
a local affair but instead is strongly linked to the processes describing the endgame of planet
formation. A successful model must not only explain what is found on the Moon but also early
bombardment constraints identified on Mercury, Earth, Mars, the asteroids, and potentially
bodies in the outer Solar System as well. The history of dynamical models applied to lunar
bombardment is more fully presented in Bottke and Norman (2017).

The first scenario is a “declining bombardment” produced by a population of
planetesimals left over from accretion that was dynamically excited by protoplanets and
planetary embryos (Wetherill 1975; Turner 1979; Morbidelli et al. 2001, 2018; Chambers and
Lissauer 2002; Bottke et al. 2007; Cuk et al. 2010; Cuk 2012). This population may include
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outer Solar System bodies injected into the inner Solar System by early giant planet migration
within a gas disk (Walsh et al. 2011; Raymond and Izidoro 2017) or the early dynamical
depletion of the primordial asteroid belt by planet formation processes (Morbidelli et al. 2015;
Nesvorny et al. 2017). A declining bombardment would produce a monotonically decreasing
impactor population over a timescale set by the planet formation model invoked. In many
scenarios, it is assumed it could produce large lunar impacts for hundreds of Myr or more.

The second scenario is an “instability-driven bombardment” caused by late giant planet
migration well after the solar nebula had dissipated. This violent rearrangement would be
capable of destabilizing Kuiper belt and asteroid reservoirs across the Solar System (Fernandez
and Ip 1984; Thommes et al. 1999; Levison et al. 2001). A quantified and well-developed
description of this behavior is provided by the “Nice model” (Fig. 5; Gomes et al. 2005;
Morbidelli et al. 2005; Tsiganis et al. 2005; Lega et al. 2013). In the Nice model, the giant
planets are assumed to have formed in a more compact configuration between 5 and ~17 AU.
They were surrounded by a primordial disk of small icy planetesimals, the ancestor of today’s
Kuiper belt, residing between ~20 and 30 AU. The net mass of the disk was several tens of Earth
masses. Slow migration of the planets was induced by gravitational interactions with these icy
planetesimals or collisionally-produced dust leaking out of the disk. Eventually, this triggered
an instability that led to a violent reorganization of the outer planets. Uranus and Neptune
were scattered into the primordial disk, flinging its members throughout the Solar System.
The instability also drove resonances across the asteroid belt, driving substantial portions of it
onto planet-crossing orbits. The majority of impacts on outer Solar System worlds would have
been from comets, while those on the terrestrial planets and Moon would have been from both
asteroids and those comets that survived passage into the inner Solar System.

The timing of the Nice model type of instability is unknown; it could potentially occur
after a delay of several tens of Myr (early instability) or as long as many hundreds of Myr
(late instability). In an early instability, the Nice model becomes yet another component of the
aforementioned declining bombardment. In a late instability, the Nice model would produce
a surge in lunar impacts hundreds of Myr after the formation of the Moon. This would come
in two phases: Kuiper-belt objects would strike over a few tens of Myr immediately after the
instability, while asteroids would continue to trickle out of the main belt over many hundreds of
Myr. At present, dynamical models favor early instabilities over late ones, though considerable
work needs to be done on modeling the trigger event (Nesvorny and Vokrouhlicky 2016). It is
also possible that a late Nice model would modify the orbits of the terrestrial planets, though
this could be a necessary step in reproducing their observed orbits (Agnor and Lin 2012; Roig
and Nesvorny 2015; Kaib and Chambers 2016).

At present, there is an ongoing debate about whether the early Moon experienced a
declining bombardment, an instability-driven bombardment, or some combination of the two
(for example, a “sawtooth” structure; Turner 1979; Morbidelli et al. 2012a). A hybrid model,
where there are both early and late components of bombardment, currently appears to do the
best job of matching constraints (Marchi et al. 2013; Bottke and Norman 2017; Morbidelli
et al. 2018). The early component would be a relatively short-lived declining bombardment
initiated during the planet formation era, with most impactors eliminated by collisional and
dynamical evolution by ~4.4 Ga. Most Pre-Nectarian and potentially some older Nectarian-
era lunar basins would be created at this time. The later component would come from a Nice
model-like late instability that would start ~4.0 Ga to perhaps 4.2 Ga. It would be responsible
for the many Nectarian-era and Imbrian-era basins and craters and the majority of Late Imbrian
and early Eratosthenian-era craters.
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5. POST-BASIN EPOCH TO PRESENT

The impact flux (Fig. 1) in the epoch between the formation of Imbrium (~3.9 Ga)
and ~3 Ga must have been substantially higher than after 3 Ga (Neukum et al. 2001). This
constraint arises from differences in crater density on the mare: the factor of ~1.7 times as
many craters on the ~3.8 Ga unit at Apollo 11 compared to the ~3.2 Ga surface at Luna 24
(Robbins 2014; Wang et al. 2015). This is also supported by sample measurements on other
lunar surfaces and by constraints on the age of the youngest large craters and basins. There
is no strong observational evidence that demands a major alteration in the crater flux over
long-time scales since the beginning of the Eratosthenian; though some amount of clustering
in time is physically plausible as asteroidal breakup events could trigger epochs with higher
rates, evidence of these events may average out over millions to billions of years (McEwen et
al. 1997; Morota et al. 2009; Basilevsky and Head 2012; Fassett and Thomson 2014).
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Figure 5. Planetary orbits and disk particle positions in the Nice model (from Bottke and Norman 2017).
The panels show four different times from a reference simulation. In this run, the giant planets were ini-
tially on nearly-circular, co-planar orbits with semi-major axes of 5.5, 8.2, 11.5, and 14.2 AU. The initial
disk contained 35 Earth masses between 15.5 and 34 AU. (a) Beginning of planetary migration, (b) Just
prior to the dynamical instability of the giant planets, (¢) During the instability, and (d) 200 Myr later, with
the final planet orbits. The timing of the instability is unknown. This event also triggers the loss of asteroids
from the primordial asteroid belt.

5.1. Constraints from crater counting and rock breakdown

Lunar chronology is constrained over the last 3 Ga by lunar mare basalt flows and younger
benchmark craters where samples yield radiometric sample ages, including Copernicus,
Tycho, North Ray, and Cone craters (Stoffler and Ryder 2001). The higher resolution imaging
of the Moon made available by LROC, SELENE, and Chang’E-1 has been used to update the
crater size—frequency distribution (CSFD) ages of these key lunar terrains (Hiesinger et al.
2003, 2012, 2016; Haruyama et al. 2009; Robbins 2014; Williams et al. 2014; Morota et al.
2015; Wang et al. 2015). A more detailed discussion of advances in crater-counting techniques
and results for different lunar units can be found in Hiesinger et al. (2023, this volume).

A constant flux model for recent lunar periods can be used to fit the radiometric and exposure
ages of Cone, North Ray, Tycho, and Copernicus craters along with the mare surfaces at Apollo
12, Apollo 15, Luna 16, and Luna 24 (Hiesinger et al. 2012; Williams et al. 2014). However, the
(Robbins 2014) results differ by a factor of 2-3 for the area surrounding North Ray crater, and
factoring in other landing sites, Robbins (2014) presented a revised chronology where a lunar
surface previously modeled at 3 Ga may have an updated model crater age as young as 1.9 Ga.

Crater size—frequency distribution measurements of Copernicus crater and one of its rays
show that Copernicus has significantly lower cumulative crater frequencies than previously
thought, yielding a model age of 797 Ma, which fits existing lunar absolute chronologies
significantly better than the results of previous counts (Hiesinger et al. 2012). Tycho crater
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is dated at ~124 Ma old, North Ray crater at ~46 Ma old, and Cone crater is ~39 Ma old
(Hiesinger et al. 2012, 2016). Recent U-Pb ages of zircon and phosphate grains of 1.4 and
1.9 Ga from sample 15405 have been interpreted by (Grange et al. 2013) as the formation ages
of Aristillus and Autolycus, respectively, which are slightly (200 Myr) younger than radiometric
ages previously proposed for these craters on the basis of **Ar—*Ar ages of shocked Apollo
15 KREEP basalt samples (Bernatowicz et al. 1978; Ryder et al. 1991). However, new crater
size—frequency distributions for individual parts of the Autolycus ejecta blanket and crater floor
yielded a wide range of model ages, none of which corresponded to either set of Apollo 15
sample ages (Hiesinger et al. 2016). This implies either that the dated samples are not related to
Autolycus or that the crater measurements are so heavily affected by resurfacing and secondary
cratering from Aristillus that they do not represent the formation age of Autolycus.

Lunar crater chronology may be refined by incorporating the relative crater degradation
state. (Soderblom 1970; Soderblom and Lebofsky 1972) derived a degradation model from a
simple diffusion equation. In the Apollo era, the data were so limited that this model was not
fully applied for classifying the crater degradation status of mare units. But more recently, high
resolution image and DTM data enabled application of the model to widespread mare units
(Fassett and Thomson 2014).

An alternative method to crater counting for estimating the age of Copernican craters
is rock abundance derived from the LRO Diviner thermal radiometer data (Bandfield et al.
2011). This method relies on the differing thermophysical characteristics of impact ejecta,
where blocks larger than ~1 m remain warm through the lunar night whereas the regolith cools
quickly. (Ghent et al. 2014) determined an inverse relationship between the rock abundance
in large craters’ ejecta and their age, as blocky ejecta is demolished by micrometeorite
impacts and thermal cracking and becomes indistinguishable from regolith for craters older
than ~1 Gyr. This suggests that the population of rocky craters is a reasonable quantitative
definition for Copernican-era craters. Using this method, Mazrouei et al. (2017) determined
the ages of young rocky craters suggested that the lunar cratering rate has increased by a factor
of ~2-3 in the last ~250 Myr relative to the preceding ~750 Myr.

5.2. Lunar impact glass samples

Lunar impact glass samples, spherules and fragments formed in impact ejecta during
ballistic flight, can provide important constraints on the Moon’s impact history. These samples
have the general composition of the target material (Delano 1991; Symes et al. 1998; Zellner
et al. 2002) but degas during the impact-melting event, enabling dating of impact events by
noble-gas methods (Culler et al. 2000; Muller et al. 2001; Delano et al. 2007; Zellner et al.
2009b). The size of the crater that creates these glasses is currently debated; suggestions for
the size of the source crater range from 1 km to >100 km in diameter (Delano 1991; H6rz and
Cintala 1997; Levine et al. 2005; Zeigler et al. 2006; Korotev et al. 2010; Norman et al. 2012).

Lunar impact glass can be distinguished from volcanic material by careful analysis of the
major elements TiO, and Cr,0; (Delano 1986). In general, impact glasses that possess higher
abundances of FeO and TiO, are more likely to survive ballistic flight and eons of bombardment
and regolith gardening, as well as be more resistant to the effects of diurnal heating of the
lunar surface that can affect how well argon isotopes are retained in the glass (Gombosi et
al. 2015). As a result, the glass shape, size, and composition are important characteristics to
consider when using lunar impact glasses as tools for understanding the lunar bombardment
rate (Zellner and Delano 2015).

Multiple populations of impact glass with ages >3500 Ma have been identified (Culler et
al. 2000; Muller et al. 2001; Levine et al. 2005; Zellner and Delano 2015), similar to the trend
exhibited by lunar meteorite clasts and terrestrial spherule beds (see Section 2.3). However,
impact glass with “Ar-*Ar ages ~800 Ma have also been identified in several Apollo regolith
samples (Levine et al. 2005; Zellner et al. 2009b). While this age is coincident in time with the
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formation of Copernicus crater (Bogard et al. 1994; Barra et al. 2006), the impact glass samples
have compositions different from the bulk regolith surrounding Copernicus, suggesting that
multiple craters may have formed at this time.

5.3. Regolith breccias and solar wind implantation

Regolith breccias formed <3.5 Ga provide a window to understanding the sources of
Earth—-Moon-crossing impactor populations during a window of declining bombardment
rates (Joy et al. 2011, 2012; Fagan et al. 2014). These younger samples potentially provide
an archive of the types of Near Earth Objects that played a role in episodic mass extinction
events here on Earth (Wetherill 1975). They also allow cross-correlation with discoveries of
terrestrial fossil meteorites such as those found in Ordovician sediments (Heck et al. 2008,
2010), believed to have been derived from the breakup of an asteroid like the L-chondrite
parent body (Haack et al. 1996).

As every particle within a sampled regolith could have seen distinct recycling histories,
determining bulk regolith ages to constrain when projectiles were delivered is challenging.
For surface regolith, one estimate of the maximum length of time that surface was exposed to
space could be taken as the formation age of the underlying geological unit; however, localized
lateral and vertical mixing often render this assumption too simplistic. The total length of time
that a regolith sample has been exposed directly to space can be estimated using indicators
such as implanted solar wind *Ar (Cohen et al. 2001; Eugster et al. 2001), the qualitative
I/FeO maturity indicator (Morris 1978; Lucey et al. 2000); the residence time of samples in
the upper regolith can be calculated using stable cosmogenic isotopes (e.g., *He, 2'Ne, 3Ar,
81Kr, 126Xe) and knowledge of the composition (Eberhardt et al. 1976; Eugster et al. 2001;
Lorenzetti et al. 2005; Curran et al. 2020). However, these methods do not tell us when the
exposure event(s) occurred. Some authors have proposed that the ratio of parentless (non-
radiogenic) *°Ar, degassed from the lunar interior, to the **Ar in bulk soils and regolith breccias
implanted by the solar wind, can be used as a semi-quantitative measure of the last time the
soil was exposed to the solar wind (Eugster et al. 1973, 1983; McKay et al. 1986; Joy et al.
2011; Fagan et al. 2014). Others have suggested alternative mechanisms for implantation of
orphan “°Ar (Ozima et al. 2004; Korochantseva et al. 2016) and the accuracy of the temporal
quantification index (Wieler 2016). Moreover, as in the case of present day soils, upper age
estimates on regolith antiquity ages are challenging to constrain (Joy et al. 2016).

5.4. Current meteoroid impact rate

The present-day flux of large meteoroids on the lunar surface has been derived from
both models and observational techniques, including seismic data of impacts and impact
flash detections (a comprehensive review can be found in Oberst et al. 2012). Amateur and
professional observatories currently monitor the Moon for light flashes, interpreted to represent
impact events (Ortiz et al. 2000, 2006; Yanagisawa and Kisaichi 2002; Madiedo et al. 2014).
ESA and NASA lunar impact monitoring programs have recorded over 400 flashes assumed
to be meteoroid impacts since 2006 (Suggs et al. 2014; Xilouris et al. 2018; Avdellidou and
Vaubaillon 2019). One of the brightest recorded flashes was later associated with a new 18.8 m
crater observed by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera
(NAC) (Robinson et al. 2015). LROC NAC temporal image pairs have also been used to
quantify the contemporary rate of crater production on the Moon, revealing 222 new impact
craters in the period 2009-2015, higher than predicted by standard production functions for the
Moon (Speyerer et al. 2016). During several of the known meteoroid showers, the Lunar Dust
Experiment (LDEX) on the Lunar Atmosphere and Dust Environment Explorer (LADEE)
observed temporary enhancements of the lunar dust cloud, localized to the hemisphere exposed
to the incident meteoroid shower flux; approximately 40 um per million years of lunar soil is
estimated to be redistributed from meteoritic bombardment (Szalay and Hordnyi 2016).
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6. SUMMARY AND FUTURE WORK

The lunar bombardment record is a crucial component in understanding Solar System
history, the architecture of the planets, and the redistribution of energy into planetary surfaces.
However, it also encompasses an enduring controversy, as evidenced by multiple recent
papers. Revisions to the geologic setting of the Apollo sample-collection sites and continued
sample characterization have weakened the case for a single sharp spike in impact flux, or
terminal lunar cataclysm. Instead, many of the 3.9 Ga ages in lunar samples, particularly in the
Apollo collection, likely represent the age of the Imbrium basin. However, there exist many
published impact ages between 3.8—4.2 Ga in lunar samples and meteorites, that appear to
show an early heavy bombardment, consistent with formation of the Solar System, followed
by a lull and then an uptick in the number of impact-affected ages. The common framing
of two endmember models, a terminal cataclysm or a smooth, declining bombardment, is
inadequate to explain all the data. The most parsimonious accounting may involve both an
early phase of post-accretion bombardment and a later population of impactors generated by
orbital instabilities of the outer planets.

Improved knowledge of the lunar cratering rate would yield better estimates for the
ages of lunar terrains from which samples are not yet available. The goal is to obtain a much
more complete knowledge of the impact history of the inner Solar System, including that of
Earth; and reduce uncertainties in the ages of planetary surfaces throughout the Solar System.
Key tests of the lunar bombardment scenarios include understanding whether the bombardment
was a global phenomenon or an artifact of Imbrium basin ejecta contamination, the age
distribution of the youngest and oldest basins, and whether the terrestrial planets and asteroid
belt experienced a relative “lull” in impacts between early and late bombardment components.
The relationship of the nearside lunar basins to one another is challenging for basin stratigraphy
based on either cross-cutting relationships or visible crater statistics, because Imbrium basin’s
ejecta influenced the surrounding region so profoundly. Therefore, improvements to orbital
remote sensing are unlikely to provide closure on this topic. Addressing these issues will
require detailed geochronology of pre-Imbrian targets, accomplished by landing and in situ
dating, and/or sample return to appropriate laboratories.

Having failed to definitively identify Nectaris or Crisium impact-melt materials in our
current returned sample collection (see Section 2.1), these areas are prime candidates for
sample-return or in situ dating missions to acquire absolute ages of these benchmark basins.
Although the Nectaris and Crisium basins have experienced both basaltic infill and erosion,
their original multiring morphologies are still recognizable. Updated geologic maps of the
Nectaris basin and its surrounding terrain identify small plains near inner-basin ring massifs
and inter-massif “draped” deposits as possible remnants of the Nectaris basin impact melt
sheet (Smith and Spudis 2013; Spudis and Smith 2013). Similar efforts also identified small
kipukas of the Crisium basin impact melt sheet, based on their morphology and composition
(Spudis and Sliz 2017). In both Nectaris and Crisium, these small areas occur between the
inner and outer basin rings. Some of the exposures exhibit cracked and fissured morphologies
consistent with those at fresh craters (such as Tycho and King craters; Howard and Wilshire
1975) and older impact melts (e.g., Orientale; Wilhelms 1987; Spudis et al. 2014), and show
embayment by subsequent mare basalt flows. The compositions of these areas, determined
from Clementine data, indicate that they have less FeO than the surrounding basalts, attesting
to their affinity to lunar highlands that were the pre-existing target materials. If these are
indeed areas of preserved Nectaris or Crisium impact melt, such sites would be unique among
basins as in situ impact melt exposures. In contrast to attempts to identify impact melt rocks
thrown from the basin to distant sites like Apollo 17 or Luna 20, regolith formed atop an
impact melt substrate would contain a majority of impact-melt rocks—more similar to finding
basaltic materials in the regolith developed over Mare Tranquilitatis at Apollo 11.
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As the oldest stratigraphically recognizable basin on the Moon, the SPA age anchors the
early impact flux curve. The crater density on SPA ejecta is a factor of two higher than Nectaris,
implying that the SPA basin did not form during the period of the lunar cataclysm, but instead
formed during an earlier phase of lunar history (Marchi et al. 2012). The composition of the
SPA interior is well-preserved in orbital remote sensing (Jolliff et al. 2000), providing a means
to establish provenance for such samples. Impact-affected rocks derived from younger basins
such as Apollo, Poincaré, Planck, Ingenii, Orientale and Schrédinger, as well as other large
impact craters, would also contribute to establishing an impact chronology far from Imbrium
that is bounded by the earliest and the latest of the recognized lunar impact basins. Sample
return from major lunar basins continues to be a high priority goal in global lunar strategy
documents (National Research Council 2003, 2007, 2011; Lunar Exploration Analysis Group
2017; International Space Exploration Coordination Group 2018).

Expanding the absolute chronological framework for the post-basin era will require
additional radiometric dating of samples with well-established provenance, including young
mare basalts and key stratigraphic craters such as Copernicus and Kepler (Ryder et al. 1989;
Hiesinger et al. 2000; Morota et al. 2011; Ohman and Kring 2012; Kriiger et al. 2016).
In addition, continued work is needed to determine the geologic provenance of Apollo and Luna
sampled units to understand sample ages, for example, understanding the Crisium lava flows
and relating them to the Luna 24 samples (Nielsen and Drake 1978; Papike and Vaniman 1978).

Understanding the sources of projectiles bombarding the Moon projectile sources will
also have important implications for understanding the dynamics of populations and temporal
evolution of the Solar System. Such work may include returning samples from known
basin impact melt deposits to help constrain both the nature of the projectile and when it
struck the Moon, as well as searches for intact meteorite fragments. Promising targets for
such searches include geochemical or physical anomalies related to impacts, for example,
magnetic anomalies surrounding the South Pole-Aitken basin that may be concentrations of
surviving impactor debris from nearside basins (Wieczorek et al. 2012), and impact crater
central peaks with unusual mineralogical signatures that may be preferential sites for surviving
projectiles (Yue et al. 2013). New laboratory methods to constrain the ages of regolith soils
and breccias would be useful in understanding the temporal record of projectile delivery.
The best temporally constrained records of regolith age are likely to be preserved in trapped
ancient “paleoregolith” horizons found sandwiched between layers of radiometrically datable
geological units such as lava flows, pyroclastic deposits, impact melt flows or ejecta blankets
(Crawford et al. 2010; Fagents et al. 2010; Rumpf et al. 2013). However, such geological
settings would require deep drilling (tens to hundreds of meters) capabilities to access the
subsurface (Crawford et al. 2007; Crawford and Joy 2014).

Current lunar regolith gardening rates are derived from data taken near the Moon’s equatorial
plane. At high latitudes, where permanently shadowed regions exist, the meteoroid fluxes and
subsequent impact gardening rates could be considerably different. A comprehensive model of
lunar bombardment including all known sporadic sources such as the northern and southern
toroidal sources would better address the impact gardening rates in these permanently shadowed
regions. Continued operation of the LRO extended mission, as well as new missions with high-
resolution imaging capabilities, increase the likelihood of finding more and larger impact events,
helping better compare the recent flux with crater counting estimates. Lengthening the time
difference between imaging sites under identical lighting conditions by LRO would improve the
chances of imaging sites under different photometric geometries to help identify new craters.
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APPENDIX—RECENT DEVELOPMENTS

Since the discovery of the Moon’s asymmetric ejecta cloud, the origin of its sunward-
canted density enhancement has not been well understood. Szalay et al. (2020) have proposed
that Beta-meteoroids that hit the Moon’s sunward side could explain this unresolved
asymmetry. Beta-meteoroids are submicron in size, comparable to or smaller than the regolith
particles they hit and can impact the Moon at very high speeds ~100 km s~!. This finding
suggests that Beta-meteoroids may also contribute to the evolution of other airless surfaces in
the inner solar system, and by extension, at exozodiacal systems.
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