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1. INTRODUCTION

Establishing an absolute lunar impact chronology has important ramifications for 
understanding the early structure of the Solar System, to understand the evolution of both the 
dynamics and composition of the bodies. Our existing understanding of inner Solar System 
chronology is anchored to the crater density and analogy with impact flux rates on the Moon. 
The topic of lunar impact history has been the subject of numerous reviews (e.g., Hartmann et 
al. 2000; Ryder et al. 2000; Stöffler et al. 2006; Chapman et al. 2007; Fassett and Minton 2013; 
Bottke and Norman 2017; Zellner 2017; Hartmann 2019). In this chapter, we focus on examining 
new work in the last decade to constrain the lunar impact flux rates enabled by missions like the 
Lunar Reconnaissance Orbiter (LRO), the Gravity Recovery and Interior Laboratory (GRAIL), 
Chandrayaan-1, SELENE, and the Chang‘E missions, as well as new results from Apollo, Luna, 
and meteorite samples made possible by increasingly sophisticated sample analysis techniques.

An important unresolved question is whether the lunar cratering rate declined 
monotonically since the Moon’s formation, or whether there was a “terminal lunar cataclysm,” 
(generalized to the Solar System as the “late heavy bombardment,”) between about 3.8 and 
4.1 Ga ago, where the rate and size of impacts increased to create the large lunar basins in 
a short period of time, well after Solar System formation. The possibility of a cataclysmic 
bombardment (Wetherill 1975) has been a central concept in planetary sciences since the 1960s, 
following detailed geological observations of the Moon and the discovery of petrological and 
geochemical evidence for intense shock metamorphism at ~3.9 Ga in many Apollo samples 
(Turner et al. 1973; Tera et al. 1974; Stöffler et al. 2006).

The last decade has given us an unprecedented look at the Moon from crust to core that gave 
us insight into the existence and structure of lunar basins, their degradation states, and stratigraphic 
relationships among them. Yet despite increasingly precise measurements of the isotopic ages 
of lunar samples and increasingly detailed geological studies of the lunar surface using high-
resolution imaging, the absolute ages of almost all lunar basins are either unknown or poorly 
constrained. Evidence of earlier impacts may be masked in the available samples by the relatively 
late Imbrium basin-forming event (Hartmann 1975; Haskin et al. 1998; Chapman et al. 2007).

The heavily cratered terrains of the Moon and other bodies such as Mercury, Mars, and 
Callisto also provide clear physical evidence for an elevated flux of impactors across the 
Solar System that continued for several hundred million years after the initial accretion and 
differentiation of the terrestrial planets (Barr and Canup 2010; Fassett and Minton 2013). The 
dynamical models conceived to explain such a phenomenon encompass the gas–dust dynamics 
of forming disks and giant planet migration. These models are now invoked to understand not 
only our Solar System, but also systems of exoplanets around other stars. Such a phenomenon 
would also have affected the Earth at a point when other evidence shows that continents, 
oceans, and perhaps even life already existed. Though the high impact rate early in lunar 
history declined in the last 3 Ga, the importance of knowing the impact flux in the Earth–Moon 
system persists through the Cambrian, affecting evolving life on Earth, and to the present day, 
to evaluate the hazards impacts pose to astronauts and spacecraft.

2. THE BASIN-FORMING EPOCH: EVIDENCE FROM SAMPLES

Geologic observations of surface morphology and geophysical data have revealed at least 
66 distinct basins and up to a few hundred candidate basins whose surface expressions have 
presumably been obscured by subsequent impact resurfacing (Wilhelms 1987; Spudis 1993; Frey 
2011; Featherstone et al. 2013; Neumann et al. 2015). Cross-cutting relationships of ejecta and 
crater densities allow construction of a relative time-sequence of the basins that have a clear 
surface expression (Wilhelms 1987; Fassett et al. 2012). This basin stratigraphy is reasonably well 
established, although some significant uncertainties remain that will be discussed later (Table 1).
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Despite increasingly precise measurements of the isotopic ages of lunar samples and 
increasingly detailed geological studies of the lunar surface using high-resolution imaging, 
the absolute ages of almost all lunar basins are either unknown or poorly constrained. In large 
part this reflects our inability to link individual lunar samples with specific basins or craters 
with a high degree of confidence. Stöffler et al. (2006) provided a comprehensive summary 
of the radiometric dates of lunar samples available at that time and their interpretation of the 
ages of key Nectarian and Imbrian basins. Updates to radiometric dates from samples and their 
association with basins is discussed in this section and summarized in Figure 1.

2.1. Revisions to major basin ages during the “Late Heavy Bombardment” era

Central to this debate is the role of the Imbrium basin, which is the second largest and one of 
the youngest basins on the Moon. Until recently there has been a broad consensus among lunar 
geologists about the relationships of samples collected by the Apollo missions to the Imbrium, 
Serenitatis, and Nectaris basins. In that view, Apollo 14 sampled primary Imbrium ejecta, 

Figure 1. Lunar impact history from absolute ages of returned lunar rocks (billions of years old, or Ga) 
and the cumulative frequency of small (>1 km) craters per km2 on the surfaces from which the samples 
were derived (after Hörz et al. 1991). The ellipse for each geologic unit encompasses the range of ages 
for returned samples and the uncertainty in crater density counts. Basins and craters are shown in orange 
while mare surfaces are shown in blue. The N(1) counts for lunar basins are derived from the N(20) counts 
in Fassett et al. (2012) using a scaling factor from Neukum and Ivanov (1994); all other N(1) values are 
from Hiesinger et al. (2023, this volume). Absolute ages for the basins reflect the ranges in Table 1, for all 
other formations, references are updated from sources in this chapter. The Neukum et al. (2001) lunar crater 
production curve is shown as a reference along with a (gray) envelope of all proposed production functions 
(discussed in detail in Hiesinger et al. 2023, this volume). Modeled crater production rates deviate from 
the curve representing a constant crater production rate around 4 Ga, implying a higher impact flux at that 
time, though the details of the curve are unconstrained at older ages.
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Apollo 17 sampled melt rocks formed by the Serenitatis event, and the Cayley and Descartes units 
at the Apollo 16 site were likely to be Imbrium and Nectaris ejecta, respectively (Stöffler et al. 
2006). Today, the relationships between impact melt samples and their source basins for Apollo 
and Luna sites is still under active debate. The regional physiographic characteristics of the Fra 
Mauro formation (Apollo 14) were clearly sculpted by Imbrium, but it has been difficult to identify 
specific samples that unequivocally represent primary Imbrium ejecta (Spudis 1993; Stöffler et 
al. 2006; Merle et al. 2014). The best available age for Imbrium appears to be 3.92  ± 0.011 Ga 
based on zircon and apatite from KREEP-rich breccias and melt rocks collected at the Apollo 12 
and 14 sites (Nemchin et al. 2009; Liu et al. 2012; Snape et al. 2016; Merle et al. 2017).

Serenitatis basin ejecta was targeted for sampling by the Apollo 17 mission with the intent 
to date the formation of the Serenitatis basin, which is stratigraphically older than Imbrium and 
a key age in the context of understanding the magnitude and duration of the LHB. Attempts 
to date the fine-grained Apollo 17 melt rocks returned 40Ar–39Ar ages that were 20–40 million 
years older than the Apollo 14 and 15 breccias that were considered (at the time) as the best 
candidates for Imbrium ejecta (Dalrymple and Ryder 1993, 1996). This conclusion supported 
the idea that multiple basins formed within a narrow interval of time. However, the gas-release 
spectra were complex and the ages depend on weak plateaus (31–36% gas release) that in some 
cases were older than those of entrained clasts, which is geologically impossible (Jessberger et 
al. 1976; Dalrymple and Ryder 1996). An alternative interpretation is that the Apollo 17 melt 
rocks contain excess Ar possibly derived from assimilation of entrained clasts (Jessberger et 
al. 1976; Haskin et al. 1998), and, therefore, yield Ar ages marginally older than their primary 
formation. Recent studies have confirmed the complex distribution of Ar isotopes in Apollo 17 
melt rocks (Mercer et al. 2015). Analysis of Lunar Reconnaissance Orbiter images of boulder 
tracks verified that the boulders that were sampled at Apollo 17 originated in outcrops within 
the North Massif walls, which had been interpreted as Serenitatis ejecta (Hurwitz and Kring 
2016; Schmitt et al. 2017). However, these massifs and the Sculptured Hills deposits may be 
more closely related to Imbrium rather than Serenitatis (Spudis et al. 2011; Fassett et al. 2012), 
and U–Pb dating of Ca-phosphates in Apollo 17 melt breccias appears to support an Imbrium 
basin origin for these rocks (Thiessen et al. 2017; Zhang et al. 2019).

Even more challenging to interpret is the diverse suite of impact breccias and melt rocks 
collected at the Apollo 16 site. This mission targeted two regionally significant geological 
units with distinct physiography: the Cayley Plains and the Descartes Hills. The Cayley Plains 
appears to be related to the Fra Mauro formation (sampled at Apollo 14) and are generally 
accepted as Imbrium ejecta, possibly reworked by the addition of material from younger craters 

1Ages are reported with significant figures and uncertainty levels in the original sources.

Table 1. List of lunar basins in stratigraphic order and their radiometric ages

Basin Name
Age (Ga)

1974–1990
Age (Ga)

1991–2006
Age (Ga) 

2009–present

South Pole-Aitken ~4.3–4.05 ~4.3–4.05 4.4(?)–4.0

Serenitatis 4.45(?)–3.86 3.90 >4.1–3.83

Nectaris ~4.2–3.89 3.92–3.89 4.2 (?)–3.92

Crisium ~4.13–3.80 3.93–3.85 ~3.9(?)

Imbrium ~3.99–3.85 3.85 3.93–3.72

Orientale 3.85–3.72 3.85–3.72 3.93–3.72

Note: Modified from Zellner 2017. Ages are from Nunes et al. (1974), Tera et al. (1974), Arvidson et al. (1976), Cado-
gan and Turner (1976), Drozd et al. (1977), Wilhelms (1987), Ryder (1990), Swindle et al. (1991), Bogard et al. (1994), 
Dalyrymple and Ryder (1993, 1996), Hartmann (2000), Ryder et al. (2000), Stöffler and Ryder (2001), Baldwin (2006), 
Koeberl (2006) and references therein, Hartmann (2019) and references therein, Norman (2009), Grange et al. (2010), 
Spudis et al. (2011), Fassett and Minton (2013), Mercer et al. (2015), and Bottke and Norman (2017) and references therein.
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(Spudis 1993; Korotev 1994; Neukum et al. 2001; Stöffler et al. 2006; Joy et al. 2011). The origin 
of the Descartes unit is less certain; both Imbrium and Nectaris ejecta has been proposed (Head 
1974; Muehlberger et al. 1980). The question is important because Nectaris is stratigraphically 
older than about a third of all of the lunar basins (Table 1), so the age of Nectaris would provide 
an important constraint on the timing and duration of the basin-forming epoch and the LHB.

Crystalline melt rocks and rock fragments were collected from the surface of the Cayley 
unit, but it is difficult to assign any of these samples to a specific geological unit (Vaniman et 
al. 1980; Norman et al. 2006; Fernandes et al. 2013). A set of relatively mafic (~17 wt.% Al2O3 
bulk rock composition), poikilitic-textured melt rocks may be the best candidates for primary 
Imbrium ejecta (Korotev 1994; Norman et al. 2006). Crystallization ages of these melt rocks 
overlap within uncertainty the age inferred above for Imbrium (3.92–3.94 Ga; Stöffler et al. 
1985; Norman et al. 2006; Norman et al. 2010), and their high concentrations of incompatible 
lithophile elements are consistent with a source in the Procellarum-KREEP Terrane. Other 
suites of Apollo 16 rocks contain impact-affected lithologies that are plausibly related to 
smaller, post-Imbrium craters (D < 300 km) in crustal terranes proximal to the Apollo 16 site 
(Niihara et al. 2019; Joy et al. 2020b).

More contentious is the geological significance of the Descartes unit, which has been 
interpreted as either Imbrium or Nectaris ejecta (Muehlberger et al. 1980; James 1981). 
The Descartes breccias differ from their Cayley counterparts in having lower-grade, fragmental 
or shock-metamorphosed matrices and highly aluminous (28–30 wt.% Al2O3) compositions 
with low concentrations of incompatible trace elements. Such compositions are similar to the 
feldspathic crust around Nectaris and contrast with the Procellarum-KREEP Terrane (Jolliff et 
al. 2000). James (1981) proposed an age of ~3.9 Ga for Nectaris, which would provide strong 
support for the terminal lunar cataclysm hypothesis. However, subsequent studies showed that the 
youngest population of clasts in the Descartes breccias is coeval with the KREEP-rich, crystalline 
melt rocks that are the best candidates for Imbrium ejecta, supporting geological observations 
that favor emplacement of the Descartes breccias as Imbrium ejecta. Interpreting the Descartes 
breccias as Imbrium ejecta removes the strongest argument for a young formation age of the 
Nectaris basin; without a young age for Nectaris, the constraint that all basins stratigraphically 
between Nectaris and Imbrium formed in a short window of time is significantly weakened, 
pulling the pin on the terminal lunar cataclysm (Table 1; Norman 2009; Norman et al. 2010).

The Descartes breccias are also intriguing because their low metamorphic grade has 
preserved evidence for earlier basin-scale impacts. Detailed petrologic, geochemical, and 
isotopic studies of a feldspathic lithology extracted from the Descartes breccia provide 
evidence for a basin-scale impact event at 4.22  ± 0.01 Ga, which may have been destroyed or 
obscured by Imbrium (Norman and Nemchin 2014; Norman et al. 2016). The 40Ar–39Ar ages 
of 4.1–4.2 Ga that are commonly observed in clasts and regolith pebbles around North Ray 
Crater (Maurer et al. 1978; Norman et al. 2010; Shuster et al. 2010; Fernandes et al. 2013) may 
reflect this putative pre-Imbrium basin rather than Nectaris (Norman et al. 2016).

Crisium is a multi-ring impact basin of Nectarian age, located in the northeastern portion of 
the lunar nearside (Head et al. 1978). Luna 24 succeeded in returning a 170-gram sample from 
Mare Crisium in 1976, which included a low-Ti basalt that is among the lowest Ti of any lunar 
basalt sampled. Luna 20 returned 55 g of samples from the highlands between Mare Fecunditatis 
and Mare Crisium. Among them were fragments interpreted to be Crisium impact melt, with 
radiometric ages ranging from ~3.84 Ga (Cadogan and Turner 1977; Stettler and Albarede 1978) 
to 3895  ± 17 Ma (Swindle et al. 1991). Additional ages for low-KREEP troctolites in the Luna 20 
sample are 4191  ± 22 Ma and 4189  ± 8 Ma (Cohen et al. 2001). Updated Apollo 17 sample ages, 
also interpreted as representing Crisium impact-melt rocks, range from 3.88 to 3.93 Ga (Schmitt 
et al. 2017). While there is no agreement on which samples represent Crisium impact melt, the 
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crater density on Crisium ejecta yields a model age of 3.99 Ga (Neukum 1984) and crater size–
frequency distributions on the impact-melt deposits identified by Spudis and Sliz (2017) yields 
a younger age for the Crisium basin at 3.85–3.87 Ga (van der Bogert et al. 2017). It should be 
noted that there is significant uncertainty in ages modeled on production functions, depending on 
what constraints are assumed on terrains older than the mare surfaces (see Hiesinger et al. 2023, 
this volume). Wilhelms (1987) placed Crisium between Nectaris and Serenitatis, however, the 
uncertainty in the age of the Serenitatis basin does not help constrain the age of the Crisium basin.

In summary, current data provide compelling evidence that the basin-forming epoch 
extended back in time to at least 4.2 Ga and possibly earlier. The strong version of the terminal 
lunar cataclysm hypothesis in which all of the lunar basins formed within a brief interval 
(≤200 Ma; Ryder 2002) may be excluded as a viable hypothesis; however, samples do provide 
evidence for formation of multiple nearside basins in the period between 4.2 and 3.85 Ga even 
though the onset of the basin-forming epoch is still unconstrained. Imbrium ejecta appear to 
be more widespread on the lunar nearside than appreciated previously, and the perception of 
a terminal lunar cataclysm may have been biased by repeated (albeit unintentional) sampling 
of Imbrium ejecta at the various Apollo landing sites (Schaeffer and Schaeffer 1977; Haskin 
et al. 1998; Norman et al. 2010). Compositional variations within Imbrium ejecta may reflect 
complexities in radial ejecta distributions and the complex geology produced by such large 
events for which we have no terrestrial analogues. The lack of absolute ages, especially for 
the older lunar basins, and solid constraints on the mass vs. time flux of impactors across the 
inner Solar System, is a significant impediment to understanding the dynamical mechanisms 
that might have contributed to forming the lunar basins.

2.2. Evidence for earlier major impact events

Lunar samples interpreted to contain indirect evidence for ancient impact events is rarer 
than direct dating of impact-melt rocks. The interpretation of chronological data as representing 
impacts is based heavily on (i) the identification of textural and chemical characteristics of 
the analyzed rocks (or rock clasts found in the lunar breccia samples) that point towards 
an origin of these rocks/clasts as impact melts (Norman 2009) and (ii) the recognition of 
internal features found in some lunar zircon grains that formed as a result of impact related 
modification of zircon (e.g., Cavosie et al. 2015). In some cases, lunar zircon grains show two 
consistently different ages linked to different internal features (Pidgeon et al. 2007; Nemchin 
et al. 2009; Bellucci et al. 2016). Additionally, exploiting the low closure temperature of some 
chronometers such as 39Ar–40Ar in plutonic rocks has started to gain momentum (Shuster et al. 
2010; Cassata et al. 2017). The main premise of this work is based on the assumption that the 
radiometric systems remain open for diffusion of daughter isotopes in the deep-seated plutonic 
rocks and require impact excavation to start the radiometric clock, thereby enabling dating of 
the major, possibly basin size, impact events.

In the terrestrial rocks, are several types of internal structures in the zircons that are directly 
linked to impacts (Timms et al. 2012). Some of these structures, such as planar deformation 
features (PDFs), twin and reidite lamellae, are too thin to be suitable for age determination, 
while others, for example deformation bands commonly show partial resetting of the U–Pb 
system (Cavosie et al. 2015). Only one type of impact related internal structure, granular 
zircon, has been shown to consistently determine impact ages in terrestrial rocks (e.g., Kenny 
et al. 2017). All of these internal features, with the exception of reidite, have been identified in 
lunar zircon grains as well (Crow et al. 2017).

In addition to the impact features known from the studies of terrestrial zircon, internal 
structures linked to impacts have been recognized in some lunar zircon grains, but which 
have not been found in terrestrial impact structures. For example, a complex zircon aggregate 
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consisting of crystalline fragments surrounded by amorphous zircon “matrix” appears in an 
anorthosite clast from the breccia sample 73235. The “matrix zircon” was interpreted to represent 
a complete resetting of the U–Pb system during an impact and gave an age of 4187 ± 11 Ma, 
one hundred million years younger than the age of the fragments (Smith et al. 1986; Pidgeon 
et al. 2007; Bellucci et al. 2016). Another example is represented by a large (600 mm) zircon 
fragment from the breccia 72215 (Nemchin et al. 2009), which shows a recrystallization rim 
with an age of 4334 ± 10 Ma, significantly younger than the rest of the grain. Amorphous 
domains in the zircon from 73235 appear to form as a result of localized shock experienced 
by the grain during an impact, while the recrystallization rim in the grain from 72215 is likely 
to be a result of a prolonged heating in an impact ejecta blanket. Both features were identified 
as being impact-related in the lunar grains because of their marked age difference compared 
with other parts of the same grains and the assumed general lack of metamorphism and fluid 
induced alteration processes on the Moon. On Earth, similar internal structures may be created 
by metamorphic growth or radiation damage of U-rich parts of the grains.

The majority of lunar zircon grains, which are fragments found in breccia matrices, appear 
to be internally uniform and yield a single U–Pb age from multiple analyses. These ages are 
commonly interpreted as crystallization ages, but this interpretation remains ambiguous, as 
they may also represent the impact-reset ages from within larger, more complex grains broken 
apart during incorporation into their host breccias. Some of these fragments may also represent 
crystallization as a result of solidification of an impact melt, as in the case of zircon from 
sample 73217, which gave an age of 4335 ± 5 Ma (Grange et al. 2009). Though investigation 
of breccia grains does not provide definitive information regarding the size of these impacts, 
evidence of large (potentially basin-sized) impacts may be gained from zircon -related minerals 
in rocks derived from thick impact-melt sheets, for example, zirconolite yielded a Pb–Pb age 
of 4.22 ± 0.01 Ga in the coarse-grained lunar melt rock 67955, and microstructural evidence of 
high temperatures was recorded in 4.328 ± 8 Myr baddeleyite in troctolite 76535 (Norman and 
Nemchin 2014; White et al. 2020).

While the majority of 39Ar–40Ar ages represent the period of the late heavy bombardment 
(Section 2.1), there are numerous examples of older, impact-affected Ar–Ar sample ages 
obtained from Apollo 15, 16 and 17 sites and lunar meteorites (Shuster et al. 2010; Fernandes 
et al. 2013; Michael et al. 2018). However, of the rocks that have been investigated in 
combination with multiple chronometers, the 39Ar–40Ar ages are slightly younger than 
Sm–Nd, Rb–Sr, and U–Pb ages obtained on the same sample (Bouvier et al. 2015; Thiessen et 
al. 2017). While impact resetting may be a potential explanation for post-crystallization 39Ar–
40Ar ages, other processes such as conductive cooling in the crust and magmatic overprints 
may play a role (Boehnke and Harrison 2016). 39Ar–40Ar thermochronometry offers means to 
assess whether ages obtained from exhumed crustal rocks can be ascribed to impact events, 
as well as potentially the size of the impact event responsible for resetting the Ar system. 
Detailed thermochronometry and modeling efforts have been used to examine multiple basin-
sized impact events prior to 4.0 Ga, based on the basins’ ability to exhume samples from deep 
within the lunar crust (Garrick-Bethell et al. 2009, 2020; Cassata et al. 2017).

Although the number of ages older than the proposed start time of the late heavy 
bombardment obtained by studies of lunar samples is limited, they appear to represent impact 
events around 4.2 and 4.3 Ga. Several lines of evidence support this, including the presence of 
large (>10 mm) neoblasts in some lunar zircon grains, which on Earth are commonly associated 
with mafic impact melts and the crater floor rocks in large (~250 km) impact structures, zircons 
and related minerals with old, impact-related ages, and 39Ar–40Ar ages of some plutonic rocks 
representing their extraction from significant depths in the lunar crust. Assigning these ages to 
specific impact structures is, however, tenuous on the basis of currently existing data.
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2.3. Sample constraints from non-Apollo sources

Lunar meteorites provide another source of information about impact history from 
locations potentially far removed from Imbrium (Joy et al. 2023, this volume). Many lunar 
meteorites are regolith breccias that carry clasts of impact melt rocks. Although relatively 
few crystallization ages have been determined for these melt rock clasts, their distribution 
is broadly similar to that inferred from the Apollo samples and crater density studies of 
the lunar surface, with the oldest apparent ages around ~4.2 Ga, a peak at ~3.7 Ga, and a 
declining number of ages to ~2.5 Ga (Cohen et al. 2000, 2005; Joy and Arai 2013). As many 
of the feldspathic lunar meteorites are regolith breccias, the longer tail to younger ages in 
the meteorite clasts compared to the Apollo melt rocks may reflect smaller or more localized 
impact events than the basins sampled by the Apollo sites (Fig. 2).

Additional constraints come from impact ages of meteorites derived from asteroid 
parent bodies (Fig. 2), largely based on 40Ar–39Ar data and U–Pb isotopic compositions of 
phosphates, as these systems are sensitive to relatively low-temperature events (reviewed 
in Bogard 2011; Jourdan 2012; Swindle et al. 2014). H-chondrites show a prominent group 
of reported 40Ar–39Ar ages between ~3.5 and 4.0 Ga, with the clast-poor, impact-melt rocks 
La Paz (LAP) 02240 and LAP 031125 yielding especially well-defined plateau ages of 
3.939 ± 0.062 Ga and 3.942  ± 0.023 Ga, respectively (Swindle et al. 2009, 2014). Eucrites and 
howardites, believed to come from the asteroid 4 Vesta, have also yielded numerous impact-
caused Ar ages between 3.4 and 4.1 Ga, with groups of ages at ~3.5 and 3.8–4.0 Ga, and 
few such ages between 4.1 and 4.5 Ga (Bogard 2011; Cohen 2013; Kennedy et al. 2013). 
The impact-melt clasts in howardites must have formed by high-velocity collisions (Cohen 
2013; Marchi et al. 2013). Mesosiderites commonly yield Ar ages of 3.8 to 4.1 Ga, with a 
mean age of 3.94 ± 0.1 Ga for the 19 samples considered by Bogard (2011), although the very 
slow cooling experienced by these meteorites following disruption and re-accretion of their 
parent body complicates the interpretation of these data.

Few rocks older than 3.9 Ga exist on the Earth, so samples from the basin epoch are 
scarce. Detrital zircon grains identified in 3.3 Ga metasediments found in the Jack Hills of 
Western Australia, have a broad abundance peak between 3.9 and 4.2 Ga, with a maximum at 
4.1 Ga (Blichert-Toft and Albarède 2008; Harrison 2009; Holden et al. 2009). Possible links 

Figure 2. Radiometric ages for impact-affected lunar samples. Data from Zellner (2017), updated with 
sources in this chapter.
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between thermal events in these zircons and impacts between 4.1–3.9 Ga have been proposed 
(Trail et al. 2007; Abbott et al. 2012; Bell and Harrison 2013; Marchi et al. 2014), though 
there is some debate as to whether the zircons crystallized from wet, minimum-melt granites 
or impact-produced melt sheets (Harrison 2009; Kenny et al. 2017). Multiple impact-produced 
spherule beds have been found in terrestrial Archean and early Proterozoic terrains (Lowe et 
al. 2003; Simonson and Glass 2004). Models of Earth impactors and spherule formation yields 
size–frequency distributions for the expected spherule population similar to those observed, 
with an overall age distribution corresponding to the formation on the Earth of 70 to 80 craters 
with D > 150 km between 1.7 and 3.7 Ga (Bottke et al. 2012; Johnson and Melosh 2012). 
Given that the Earth has a gravitational cross section ~20× that of the Moon, these constraints 
would explain four such craters on the Moon formed in the period 3.0 to 3.7 Ga. Collectively, 
they suggest the LHB had a long-lived tail that potentially lasted down to ~2 Ga on Earth 
for Chicxulub-sized impact events, consistent with the distribution of impact ages in lunar 
meteorites (Cohen et al. 2000, 2005; Joy and Arai 2013).

2.4. Sources of lunar impactors

Establishing the sources of and changes in impactor populations responsible for basin and 
post-basin impact events provides critical constraints for understanding the causes of enhanced 
impact flux and for helping to develop models of the Solar System’s dynamical evolution 
(see Section 4). Estimates of the proportion of material added to the Moon by impactors in 
the epoch of basin formation are in the range of 0.05 to 0.005% of the Moon’s total mass, 
much smaller than the amount of material added to the Earth and Moon during the late veneer 
immediately following formation (Morgan et al. 2001; Morbidelli et al. 2012b; Marchi et 
al. 2014; Walker et al. 2015). Such impactors could include a wide variety of asteroid types, 
comets and planetary materials (including the possibility of Earth ejected debris; Armstrong 
et al. 2002; Crawford et al. 2008; Armstrong 2010) and the dust derived from any of these 
sources. The types of asteroids that are sampled at the present day on Earth as meteorites, or 
the proportion between cometary bodies and near Earth-cross asteroids, may not necessarily 
be similar to those that were responsible for the impact basins and craters on the Moon in the 
basin-forming epoch. Recent review papers on the topic of impactor sources are provided by 
Walker et al. (2015) and Joy et al. (2016).

Evidence for the parent-bodies of lunar basin-forming impactors comes from a combination 
of petrological, geochemical and isotopic studies of lunar samples (Morgan et al. 1972, 1974; 
Korotev 1987; James 1996; Kring and Cohen 2002; Norman et al. 2002; Puchtel et al. 2008; 
Fischer-Gödde and Becker 2012; Joy et al. 2012 ; Sharp et al. 2014; Liu et al. 2015; Walker et 
al. 2015; Gleißner and Becker 2017, 2019; McIntosh et al. 2020) coupled to remote sensing 
observations of lunar crater size density populations (Strom et al. 2005; Marchi et al. 2012).

Highly siderophile element (HSE) and isotopic analyses of impact melt breccias of known 
age provide indirect chemical fingerprinting of ancient impactors that have been mixed with 
lunar target rocks (Walker et al. 2015). There are potential complications involved in closed 
system fractionation of metallic phases in silicate melt systems (Gleißner and Becker 2017), 
but analysis of multiple aliquots of the same sample can be used to mitigate these effects 
and infer the impactor composition. The fingerprints of these impactors have a range of 
HSE compositions. Data from Apollo 14, 15, 16 and 17 impact melts (along with one lunar 
meteorite) imply that projectile compositions in the basin-forming epoch were often more 
fractionated relative to the HSE signatures that were added during the late veneer accretion 
(Walker et al. 2015; Day et al. 2016) and they are also not identical to the main types of 
ordinary chondrites meteorites that we have in the present-day meteorite population (Liu et al. 
2015; Walker et al. 2015). The impactors range from those that were compositionally similar 
to primitive chondritic asteroids and those that were from differentiated planetary embryo 
cores (Kring and Cohen 2002; Fischer-Gödde and Becker 2012; Walker et al. 2015; Gleißner 
and Becker 2017). Notably non-chondritic signatures (superchonditic HSE/Ir and enrichment 
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of Ru relative to Pt) are reported in Apollo 16 samples, consistent with high abundances of iron 
meteorite-like metal frequently observed in the Apollo 16 lunar regolith and impact breccias 
(Korotev 1987). This implies that a planetary embryo core material may be responsible for 
the Imbrium impact event collision, although as Walker et al. (2015) note, this final Imbrium 
impactor event added only a very limited HSE contribution to the generated impact melts. It 
is highly likely that mixing also occurred between these different components during melting 
of earlier ejecta deposits (Gleißner and Becker 2017); indeed, some metamorphic granulitic 
samples, that are thought to represent older impact materials, have chemical signatures that 
are more akin to some ordinary and carbonaceous chondrite meteorites types (Fischer-Gödde 
and Becker 2012; Walker et al. 2015). Although HSE contents and relative isotope abundances 
have not yet been determined for comets, the lunar impactor types inferred by these HSE 
methods are compositionally distinct from the types of primitive carbonaceous chondrites 
thought to be most akin to cometary materials (i.e., the CM or CI or Tagish Lake meteorite 
types; Brandon et al. 2005; Liu et al. 2015).

Fragments of exogenous contributions to the lunar regolith provide more direct evidence of 
the types of small bodies striking the Moon at different times (Armstrong et al. 2002; Chapman 
2002; Rubin 2012; Joy et al. 2012, 2016, 2020a). The survivability of different types of projectiles 
on the Moon varies, controlled by such factors as impact velocity, where long and short period 
comets typically have higher collisional speeds (>20 km/s) compared with those of asteroids 
(~18 km/s on average). These velocities may have been different in the past than at the present 
day as the Moon was closer in orbit to the Earth’s gravity well (Marchi et al. 2012). Other factors 
contributing to projectile survival include impact angle, where trajectories of <10º potentially 
account for higher survival rates (Pierazzo and Melosh 2000; Svetsov and Shuvalov 2015; 
Schultz and Crawford 2016); target material properties, as more porous target rocks may buffer 
impacts and enhance survival (Nagaoka et al. 2014; Svetsov and Shuvalov 2015; Avdellidou et al. 
2016; Daly and Schultz 2016); and impactor physical properties, where volatile-rich projectiles 
like comets will lose much of their water and hydrated mineral components in the vapor plume 
(Artemieva et al. 2008; Ong et al. 2010; Svetsov and Shuvalov 2015).

To date only mm to sub-mm sized meteorite silicate and metal meteorite fragments have 
been found in lunar regolith samples (Joy et al. 2016) and, given the constraints of what we 
know of comets from silicate phases collected by the Stardust mission and stratospheric 
interplanetary dust particles (IDPs), no cometary silicate debris has been directly identified 
in lunar regolith samples. Our best view to the basin-forming epoch surface regolith record, 
where such an archive potentially resides, are through the “ancient” regolith breccias formed 
from soils >3.5 Ga (McKay et al. 1986; Joy et al. 2011). However, our geographic view is 
limited to samples from the Apollo 16 landing site (McKay et al. 1986; Joy et al. 2011, 2012; 
Fagan et al. 2014). The Apollo 16 ancient regolith breccias have so far only yielded only 
small ultramafic magnesian relics, which are chemically distinct from lunar materials, and 
may represent silicate debris from primitive chondritic meteorites (Joy et al. 2012).

The collective evidence from detection of primitive chondritic projectile relics in ancient 
Apollo 16 regolith breccias and HSE analyses of impact melt samples supports the likelihood 
that asteroid-type projectiles were delivered to the Moon in the latter stages of the basin-
forming epoch and, therefore, favors models involving leftover planetesimals of the terrestrial 
planet region or asteroid collisions rather than comets or Kuiper belt objects (Kring and Cohen 
2002; Norman et al. 2006; Walker et al. 2015). This observation is bolstered by observations 
that that that the current population of craters is consistent with asteroidal sources (Werner et 
al. 2002; Morota et al. 2008). However, there is a need to expand our knowledge base across 
the lunar surface; future lunar regolith research and exploration should make efforts to identify 
evidence for such impactors in order to chemically and isotopically identify their parent bodies.
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3. THE BASIN-FORMING EPOCH: STRATIGRAPHIC RELATIONSHIPS

Establishing the sequence of lunar basins is important, since basin ejecta are critical markers 
in the stratigraphic framework for the Moon (Shoemaker et al. 1962). Basin relationships 
on the Moon’s surface were established by geologic mapping between the early 1960s and 
mid-1980s and are summarized by (Wilhelms 1987). The ejecta and secondary craters from 
large, ~1000 km diameter basins like Imbrium or Orientale modified the surrounding crust at a 
hemispheric scale (Head et al. 2010). Smaller ~300–500-km impact basins have more regional 
effects, but form more frequently, so their stratigraphy is important as well. In conjunction 
with absolute ages derived from samples, constraining the stratigraphy of lunar basins can 
illuminate the impactor flux early in the inner Solar System. The methodology for using remote 
sensing data to untangle the sequence of basins relies on three main categories of observations: 
superposition and cross-cutting relationships, crater counting, and basin degradation state. The 
last decade of observations from LRO, GRAIL, and other missions has enabled progress on 
basin stratigraphy using each of these techniques.

The Lunar Orbiter Laser Altimeter (LOLA) in LRO and the GRAIL mission have created 
the basis for a global assessment of the crustal structure of the Moon and the history of 
impact structures with diameters exceeding ~200 km, including impact basins (Wieczorek 
et al. 2013; Zuber et al. 2013; Neumann et al. 2015; Smith et al. 2017). The impact process 
and subsequent gravitational rebound excavates and redistributes the lunar crust, leaving a 
characteristic signature of central thinning and peripheral thickening. Depending on the degree 
of isostatic relaxation and subsequent infilling, the resulting central free-air gravity signature 
may be strongly positive (mascons) or somewhat negative. However, a bandpassed Bouguer 
anomaly map (Fig. 3) shows a positive central anomaly indicating mantle uplift and thinned 
crust, usually encircled by an annular region of thickened crust resulting from processes within 
the transient cavity. As an example, the original cavity wall was not preserved in any of the 
topographic rings exposed at the surface of the Orientale multi-ring basin, but the size of such 
basins may be estimated from the diameter of the central Bouguer high, even in the most 
degraded cases where the main topographic rim can no longer be identified (Zuber et al. 2016). 
The size can be related by scaling laws to the original impact energy and thus the history and 
chronology of impact basins constrains dynamical models of the early Solar System, and to 
some extent, target thermal structure (Melosh 1989; Miljković et al. 2013; Baker et al. 2016).

Figure 3. GRAIL Bouguer gravity anomaly map bandpassed from spherical harmonic degree 6-600 to 
emphasize basins, from Neumann et al. (2015) CC-BY-NC.
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The GRAIL gravity data have provided substantial new clarity about what basins exist 
and the size of individual basins over the entire lunar surface. (Neumann et al. 2015) cataloged 
43 basins with diameters greater than 300 km (Fig. 4), more than conservative estimates from 
LOLA data but fewer than some other pre-GRAIL estimates suggested (Frey 2011; Fassett 
et al. 2012; Featherstone et al. 2013). Previously-identified basins classified as “probable” 
or “uncertain” were relocated, downsized or eliminated while some new basins were added 
or confirmed on the basis of their clear gravity signature. In some cases, basin sizes were 
substantially revised. The population of basins with diameters less than 200 km is fitted 
well with the existing cumulative Hartmann–Neukum production function, but this function 
underestimates the basin population with diameters between 300 and 1000 km. Efforts to 
resolve impacts that have almost fully relaxed, have unusual gravity signatures, or have been 
buried under mare deposits, have turned up a few smaller proposed basins but do not generate 
overwhelming changes in the size–frequency distribution (Ishihara et al. 2011; Schultz and 
Crawford 2016; Sood et al. 2017). The cumulative distribution of basins D > 300 km has grown 
only slightly, not supporting models of impactors with a size distribution of the main asteroid 
belt (Strom et al. 2005); it is unlikely that the lunar surface could have been bombarded by 
enough main belt asteroids to produce the observed number of D > 90 km craters without 
producing many basins larger than Imbrium (Marchi et al. 2009; Minton et al. 2015).

Crustal thickness maps of the Moon have revealed more large impact basins on the nearside 
hemisphere of the Moon than on its farside. One possible explanation for this asymmetry 
is differences in crustal properties (particularly temperature) at the time the basins formed 
(Miljković et al. 2013). However, the global asymmetry is still under debate, as the gravitational 
structure of the most ancient structures may be severely overprinted or completely absent. 
Some elongated gravity signatures or lineated features in topography have been proposed to 
represent fragments of oblique impact bodies rather than separate impact basins (Wichman and 
Schultz 1992; Schultz and Crawford 2016), while others hold that nearly-coincident impact 
structures may have been emplaced in different eras (Ishihara et al. 2011).

Measurements of the superposed crater population of basins are used to order the basin 
sequence (Hartmann and Wood 1971; Fassett et al. 2012; Fassett 2016). The main limiting 
factors in using this technique are that basins have a limited surface area, effects of later 
resurfacing can erase superposed craters (including deposition of maria), and uncertainties about 
the contribution of secondary craters (Hiesinger et al. 2023, this volume). Fassett et al. (2012) 
used LRO images and topography to re-examine both the relative stratigraphy and the crater 

Figure 4. Strom’s (2005) asteroid belt population size distribution (squares) aligned to match the R-plot 
density of GRAIL-determined basins (circles) at a diameter of 200 km, and the LOLA-derived (Head et al. 
2010) catalog prior to GRAIL (diamonds and gray field). Adapted from Neumann et al. (2015) CC-BY-NC.
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statistics of ≥20 km craters superposed on 30 lunar basins larger than 300 km. Along with 
a substantially improved basemap for crater analysis, the Fassett et al. (2012) study used a 
buffered crater counting approach to partially counteract the effects of later resurfacing of 
basins by maria. The major conclusion from that study was that the “standard” sequence of 
lunar basins developed by Wilhelms (1987) was qualitatively supported, although there were 
many more superposed craters on these basins than was originally recognized.

A major question reinvigorated by recent mission data has been the relative stratigraphic 
position of the Serenitatis basin. The highlands materials sampled at the Apollo 17 landing 
site were located at the most prominent Serenitatis ring, so its samples were used to argue 
that Serenitatis must be relatively young (i.e., Nectarian in age, slightly older than Imbrium; 
see Section 2.1). Spudis et al. (2011) used LROC data to re-examine the morphology of 
the Sculptured Hills from which the Apollo 17 samples are collected, making the argument 
that the Sculptured Hills are likely Imbrium ejecta rather than Serenitatis ejecta. Moreover, 
they point out that the numerous large craters on the eastern Serenitatis rim would be more 
consistent with an older pre-Nectarian age, an argument also supported by Fassett et al. (2012). 
If correct, this would mean that the presumed connection between the Apollo 17 samples and 
Serenitatis is incorrect. On the other hand, Evans et al. (2016) used GRAIL data to search 
for craters that formed after Serenitatis (and other basins) that were then buried by mare, and 
found that Serenitatis had relatively few buried superposed craters ≥90 km. This supports the 
original interpretation that Serenitatis is Nectarian in age. This particular region of the Moon is 
challenging for basin stratigraphy based on either cross-cutting relationships or visible crater 
statistics, because Imbrium basin’s ejecta influenced the surrounding region so profoundly.

The relative degradation state between basins is also an indicator of their relative age. This 
arises because the topography, morphology, and interior structure of younger basins are less 
modified by later processes compared to those of older basins. Developing the sequence of basins 
based on their apparent morphological degradation state has been attempted using Lunar Orbiter 
observations (Stuart-Alexander and Howard 1970) and has also been extended to analyzing the 
gravity signature of basins to show that the crustal thickness contrast between the interior of a 
basin and its surroundings decreases with age (Neumann et al. 1996; Kamata et al. 2015; Conrad 
et al. 2016). The implication of these studies is that during the pre-Nectarian epoch, basin 
relaxation was an important process. Additionally, the nearside hemisphere is dominated by 
the Procellarum region, a 3,200-km diameter quasi-circular tectonomagmatic feature (Andrews-
Hanna et al. 2014). The unique thermal history of the Procellarum region likely modified or 
erased ancient nearside basins, also potentially accounting for the paucity of lunar impact-melt 
rocks older than 4.2 Ga in the nearside lunar sample collections (see Section 2.1).

4. DYNAMICAL MODELS FOR THE BASIN-FORMING EVENTS

There are two major classes of dynamical scenarios that are frequently invoked to 
describe early bombardment of the Moon. Both assume that lunar bombardment is not merely 
a local affair but instead is strongly linked to the processes describing the endgame of planet 
formation. A successful model must not only explain what is found on the Moon but also early 
bombardment constraints identified on Mercury, Earth, Mars, the asteroids, and potentially 
bodies in the outer Solar System as well. The history of dynamical models applied to lunar 
bombardment is more fully presented in Bottke and Norman (2017).

The first scenario is a “declining bombardment” produced by a population of 
planetesimals left over from accretion that was dynamically excited by protoplanets and 
planetary embryos (Wetherill 1975; Turner 1979; Morbidelli et al. 2001, 2018; Chambers and 
Lissauer 2002; Bottke et al. 2007; Ćuk et al. 2010; Ćuk 2012). This population may include 
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outer Solar System bodies injected into the inner Solar System by early giant planet migration 
within a gas disk (Walsh et al. 2011; Raymond and Izidoro 2017) or the early dynamical 
depletion of the primordial asteroid belt by planet formation processes (Morbidelli et al. 2015; 
Nesvorný et al. 2017). A declining bombardment would produce a monotonically decreasing 
impactor population over a timescale set by the planet formation model invoked. In many 
scenarios, it is assumed it could produce large lunar impacts for hundreds of Myr or more.

The second scenario is an “instability-driven bombardment” caused by late giant planet 
migration well after the solar nebula had dissipated. This violent rearrangement would be 
capable of destabilizing Kuiper belt and asteroid reservoirs across the Solar System (Fernandez 
and Ip 1984; Thommes et al. 1999; Levison et al. 2001). A quantified and well-developed 
description of this behavior is provided by the “Nice model” (Fig. 5; Gomes et al. 2005; 
Morbidelli et al. 2005; Tsiganis et al. 2005; Lega et al. 2013). In the Nice model, the giant 
planets are assumed to have formed in a more compact configuration between 5 and ~17 AU. 
They were surrounded by a primordial disk of small icy planetesimals, the ancestor of today’s 
Kuiper belt, residing between ~20 and 30 AU. The net mass of the disk was several tens of Earth 
masses. Slow migration of the planets was induced by gravitational interactions with these icy 
planetesimals or collisionally-produced dust leaking out of the disk. Eventually, this triggered 
an instability that led to a violent reorganization of the outer planets. Uranus and Neptune 
were scattered into the primordial disk, flinging its members throughout the Solar System. 
The instability also drove resonances across the asteroid belt, driving substantial portions of it 
onto planet-crossing orbits. The majority of impacts on outer Solar System worlds would have 
been from comets, while those on the terrestrial planets and Moon would have been from both 
asteroids and those comets that survived passage into the inner Solar System.

The timing of the Nice model type of instability is unknown; it could potentially occur 
after a delay of several tens of Myr (early instability) or as long as many hundreds of Myr 
(late instability). In an early instability, the Nice model becomes yet another component of the 
aforementioned declining bombardment. In a late instability, the Nice model would produce 
a surge in lunar impacts hundreds of Myr after the formation of the Moon. This would come 
in two phases: Kuiper-belt objects would strike over a few tens of Myr immediately after the 
instability, while asteroids would continue to trickle out of the main belt over many hundreds of 
Myr. At present, dynamical models favor early instabilities over late ones, though considerable 
work needs to be done on modeling the trigger event (Nesvorný and Vokrouhlický 2016). It is 
also possible that a late Nice model would modify the orbits of the terrestrial planets, though 
this could be a necessary step in reproducing their observed orbits (Agnor and Lin 2012; Roig 
and Nesvorný 2015; Kaib and Chambers 2016).

At present, there is an ongoing debate about whether the early Moon experienced a 
declining bombardment, an instability-driven bombardment, or some combination of the two 
(for example, a “sawtooth” structure; Turner 1979; Morbidelli et al. 2012a). A hybrid model, 
where there are both early and late components of bombardment, currently appears to do the 
best job of matching constraints (Marchi et al. 2013; Bottke and Norman 2017; Morbidelli 
et al. 2018). The early component would be a relatively short-lived declining bombardment 
initiated during the planet formation era, with most impactors eliminated by collisional and 
dynamical evolution by ~4.4 Ga. Most Pre-Nectarian and potentially some older Nectarian-
era lunar basins would be created at this time. The later component would come from a Nice 
model-like late instability that would start ~4.0 Ga to perhaps 4.2 Ga. It would be responsible 
for the many Nectarian-era and Imbrian-era basins and craters and the majority of Late Imbrian 
and early Eratosthenian-era craters.
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5. POST-BASIN EPOCH TO PRESENT

The impact flux (Fig. 1) in the epoch between the formation of Imbrium (~3.9 Ga) 
and ~3 Ga must have been substantially higher than after 3 Ga (Neukum et al. 2001). This 
constraint arises from differences in crater density on the mare: the factor of ~1.7 times as 
many craters on the ~3.8 Ga unit at Apollo 11 compared to the ~3.2 Ga surface at Luna 24 
(Robbins 2014; Wang et al. 2015). This is also supported by sample measurements on other 
lunar surfaces and by constraints on the age of the youngest large craters and basins. There 
is no strong observational evidence that demands a major alteration in the crater flux over 
long-time scales since the beginning of the Eratosthenian; though some amount of clustering 
in time is physically plausible as asteroidal breakup events could trigger epochs with higher 
rates, evidence of these events may average out over millions to billions of years (McEwen et 
al. 1997; Morota et al. 2009; Basilevsky and Head 2012; Fassett and Thomson 2014).

5.1. Constraints from crater counting and rock breakdown

Lunar chronology is constrained over the last 3 Ga by lunar mare basalt flows and younger 
benchmark craters where samples yield radiometric sample ages, including Copernicus, 
Tycho, North Ray, and Cone craters (Stöffler and Ryder 2001). The higher resolution imaging 
of the Moon made available by LROC, SELENE, and Chang’E-1 has been used to update the 
crater size–frequency distribution (CSFD) ages of these key lunar terrains (Hiesinger et al. 
2003, 2012, 2016; Haruyama et al. 2009; Robbins 2014; Williams et al. 2014; Morota et al. 
2015; Wang et al. 2015). A more detailed discussion of advances in crater-counting techniques 
and results for different lunar units can be found in Hiesinger et al. (2023, this volume).

A constant flux model for recent lunar periods can be used to fit the radiometric and exposure 
ages of Cone, North Ray, Tycho, and Copernicus craters along with the mare surfaces at Apollo 
12, Apollo 15, Luna 16, and Luna 24 (Hiesinger et al. 2012; Williams et al. 2014). However, the 
(Robbins 2014) results differ by a factor of 2–3 for the area surrounding North Ray crater, and 
factoring in other landing sites, Robbins (2014) presented a revised chronology where a lunar 
surface previously modeled at 3 Ga may have an updated model crater age as young as 1.9 Ga.

Crater size–frequency distribution measurements of Copernicus crater and one of its rays 
show that Copernicus has significantly lower cumulative crater frequencies than previously 
thought, yielding a model age of 797 Ma, which fits existing lunar absolute chronologies 
significantly better than the results of previous counts (Hiesinger et al. 2012). Tycho crater 

Figure 5. Planetary orbits and disk particle positions in the Nice model (from Bottke and Norman 2017). 
The panels show four different times from a reference simulation. In this run, the giant planets were ini-
tially on nearly-circular, co-planar orbits with semi-major axes of 5.5, 8.2, 11.5, and 14.2 AU. The initial 
disk contained 35 Earth masses between 15.5 and 34 AU. (a) Beginning of planetary migration, (b) Just 
prior to the dynamical instability of the giant planets, (c) During the instability, and (d) 200 Myr later, with 
the final planet orbits. The timing of the instability is unknown. This event also triggers the loss of asteroids 
from the primordial asteroid belt.
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is dated at ~124 Ma old, North Ray crater at ~46 Ma old, and Cone crater is ~39 Ma old 
(Hiesinger et al. 2012, 2016). Recent U–Pb ages of zircon and phosphate grains of 1.4 and 
1.9 Ga from sample 15405 have been interpreted by (Grange et al. 2013) as the formation ages 
of Aristillus and Autolycus, respectively, which are slightly (200 Myr) younger than radiometric 
ages previously proposed for these craters on the basis of 40Ar–39Ar ages of shocked Apollo 
15 KREEP basalt samples (Bernatowicz et al. 1978; Ryder et al. 1991). However, new crater 
size–frequency distributions for individual parts of the Autolycus ejecta blanket and crater floor 
yielded a wide range of model ages, none of which corresponded to either set of Apollo 15 
sample ages (Hiesinger et al. 2016). This implies either that the dated samples are not related to 
Autolycus or that the crater measurements are so heavily affected by resurfacing and secondary 
cratering from Aristillus that they do not represent the formation age of Autolycus.

Lunar crater chronology may be refined by incorporating the relative crater degradation 
state. (Soderblom 1970; Soderblom and Lebofsky 1972) derived a degradation model from a 
simple diffusion equation. In the Apollo era, the data were so limited that this model was not 
fully applied for classifying the crater degradation status of mare units. But more recently, high 
resolution image and DTM data enabled application of the model to widespread mare units 
(Fassett and Thomson 2014).

An alternative method to crater counting for estimating the age of Copernican craters 
is rock abundance derived from the LRO Diviner thermal radiometer data (Bandfield et al. 
2011). This method relies on the differing thermophysical characteristics of impact ejecta, 
where blocks larger than ~1 m remain warm through the lunar night whereas the regolith cools 
quickly. (Ghent et al. 2014) determined an inverse relationship between the rock abundance 
in large craters’ ejecta and their age, as blocky ejecta is demolished by micrometeorite 
impacts and thermal cracking and becomes indistinguishable from regolith for craters older 
than ~1 Gyr. This suggests that the population of rocky craters is a reasonable quantitative 
definition for Copernican-era craters. Using this method, Mazrouei et al. (2017) determined 
the ages of young rocky craters suggested that the lunar cratering rate has increased by a factor 
of ~2–3 in the last ~250 Myr relative to the preceding ~750 Myr.

5.2. Lunar impact glass samples

Lunar impact glass samples, spherules and fragments formed in impact ejecta during 
ballistic flight, can provide important constraints on the Moon’s impact history. These samples 
have the general composition of the target material (Delano 1991; Symes et al. 1998; Zellner 
et al. 2002) but degas during the impact-melting event, enabling dating of impact events by 
noble-gas methods (Culler et al. 2000; Muller et al. 2001; Delano et al. 2007; Zellner et al. 
2009b). The size of the crater that creates these glasses is currently debated; suggestions for 
the size of the source crater range from 1 km to >100 km in diameter (Delano 1991; Hörz and 
Cintala 1997; Levine et al. 2005; Zeigler et al. 2006; Korotev et al. 2010; Norman et al. 2012).

Lunar impact glass can be distinguished from volcanic material by careful analysis of the 
major elements TiO2 and Cr2O3 (Delano 1986). In general, impact glasses that possess higher 
abundances of FeO and TiO2 are more likely to survive ballistic flight and eons of bombardment 
and regolith gardening, as well as be more resistant to the effects of diurnal heating of the 
lunar surface that can affect how well argon isotopes are retained in the glass (Gombosi et 
al. 2015). As a result, the glass shape, size, and composition are important characteristics to 
consider when using lunar impact glasses as tools for understanding the lunar bombardment 
rate (Zellner and Delano 2015).

Multiple populations of impact glass with ages >3500 Ma have been identified (Culler et 
al. 2000; Muller et al. 2001; Levine et al. 2005; Zellner and Delano 2015), similar to the trend 
exhibited by lunar meteorite clasts and terrestrial spherule beds (see Section 2.3). However, 
impact glass with 40Ar–39Ar ages ~800 Ma have also been identified in several Apollo regolith 
samples (Levine et al. 2005; Zellner et al. 2009b). While this age is coincident in time with the 
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formation of Copernicus crater (Bogard et al. 1994; Barra et al. 2006), the impact glass samples 
have compositions different from the bulk regolith surrounding Copernicus, suggesting that 
multiple craters may have formed at this time.

5.3. Regolith breccias and solar wind implantation

Regolith breccias formed <3.5 Ga provide a window to understanding the sources of 
Earth–Moon-crossing impactor populations during a window of declining bombardment 
rates (Joy et al. 2011, 2012; Fagan et al. 2014). These younger samples potentially provide 
an archive of the types of Near Earth Objects that played a role in episodic mass extinction 
events here on Earth (Wetherill 1975). They also allow cross-correlation with discoveries of 
terrestrial fossil meteorites such as those found in Ordovician sediments (Heck et al. 2008, 
2010), believed to have been derived from the breakup of an asteroid like the L-chondrite 
parent body (Haack et al. 1996).

As every particle within a sampled regolith could have seen distinct recycling histories, 
determining bulk regolith ages to constrain when projectiles were delivered is challenging. 
For surface regolith, one estimate of the maximum length of time that surface was exposed to 
space could be taken as the formation age of the underlying geological unit; however, localized 
lateral and vertical mixing often render this assumption too simplistic. The total length of time 
that a regolith sample has been exposed directly to space can be estimated using indicators 
such as implanted solar wind 36Ar (Cohen et al. 2001; Eugster et al. 2001), the qualitative 
Is/FeO maturity indicator (Morris 1978; Lucey et al. 2000); the residence time of samples in 
the upper regolith can be calculated using stable cosmogenic isotopes (e.g., 3He, 21Ne, 38Ar, 
81Kr, 126Xe) and knowledge of the composition (Eberhardt et al. 1976; Eugster et al. 2001; 
Lorenzetti et al. 2005; Curran et al. 2020). However, these methods do not tell us when the 
exposure event(s) occurred. Some authors have proposed that the ratio of parentless (non-
radiogenic) 40Ar, degassed from the lunar interior, to the 36Ar in bulk soils and regolith breccias 
implanted by the solar wind, can be used as a semi-quantitative measure of the last time the 
soil was exposed to the solar wind (Eugster et al. 1973, 1983; McKay et al. 1986; Joy et al. 
2011; Fagan et al. 2014). Others have suggested alternative mechanisms for implantation of 
orphan 40Ar (Ozima et al. 2004; Korochantseva et al. 2016) and the accuracy of the temporal 
quantification index (Wieler 2016). Moreover, as in the case of present day soils, upper age 
estimates on regolith antiquity ages are challenging to constrain (Joy et al. 2016).

5.4. Current meteoroid impact rate

The present-day flux of large meteoroids on the lunar surface has been derived from 
both models and observational techniques, including seismic data of impacts and impact 
flash detections (a comprehensive review can be found in Oberst et al. 2012). Amateur and 
professional observatories currently monitor the Moon for light flashes, interpreted to represent 
impact events (Ortiz et al. 2000, 2006; Yanagisawa and Kisaichi 2002; Madiedo et al. 2014). 
ESA and NASA lunar impact monitoring programs have recorded over 400 flashes assumed 
to be meteoroid impacts since 2006 (Suggs et al. 2014; Xilouris et al. 2018; Avdellidou and 
Vaubaillon 2019). One of the brightest recorded flashes was later associated with a new 18.8 m 
crater observed by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera 
(NAC) (Robinson et al. 2015). LROC NAC temporal image pairs have also been used to 
quantify the contemporary rate of crater production on the Moon, revealing 222 new impact 
craters in the period 2009–2015, higher than predicted by standard production functions for the 
Moon (Speyerer et al. 2016). During several of the known meteoroid showers, the Lunar Dust 
Experiment (LDEX) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) 
observed temporary enhancements of the lunar dust cloud, localized to the hemisphere exposed 
to the incident meteoroid shower flux; approximately 40 μm per million years of lunar soil is 
estimated to be redistributed from meteoritic bombardment (Szalay and Horányi 2016).
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6. SUMMARY AND FUTURE WORK

The lunar bombardment record is a crucial component in understanding Solar System 
history, the architecture of the planets, and the redistribution of energy into planetary surfaces. 
However, it also encompasses an enduring controversy, as evidenced by multiple recent 
papers. Revisions to the geologic setting of the Apollo sample-collection sites and continued 
sample characterization have weakened the case for a single sharp spike in impact flux, or 
terminal lunar cataclysm. Instead, many of the 3.9 Ga ages in lunar samples, particularly in the 
Apollo collection, likely represent the age of the Imbrium basin. However, there exist many 
published impact ages between 3.8–4.2 Ga in lunar samples and meteorites, that appear to 
show an early heavy bombardment, consistent with formation of the Solar System, followed 
by a lull and then an uptick in the number of impact-affected ages. The common framing 
of two endmember models, a terminal cataclysm or a smooth, declining bombardment, is 
inadequate to explain all the data. The most parsimonious accounting may involve both an 
early phase of post-accretion bombardment and a later population of impactors generated by 
orbital instabilities of the outer planets.

Improved knowledge of the lunar cratering rate would yield better estimates for the 
ages of lunar terrains from which samples are not yet available. The goal is to obtain a much 
more complete knowledge of the impact history of the inner Solar System, including that of 
Earth; and reduce uncertainties in the ages of planetary surfaces throughout the Solar System. 
Key tests of the lunar bombardment scenarios include understanding whether the bombardment 
was a global phenomenon or an artifact of Imbrium basin ejecta contamination, the age 
distribution of the youngest and oldest basins, and whether the terrestrial planets and asteroid 
belt experienced a relative “lull” in impacts between early and late bombardment components. 
The relationship of the nearside lunar basins to one another is challenging for basin stratigraphy 
based on either cross-cutting relationships or visible crater statistics, because Imbrium basin’s 
ejecta influenced the surrounding region so profoundly. Therefore, improvements to orbital 
remote sensing are unlikely to provide closure on this topic. Addressing these issues will 
require detailed geochronology of pre-Imbrian targets, accomplished by landing and in situ 
dating, and/or sample return to appropriate laboratories.

Having failed to definitively identify Nectaris or Crisium impact-melt materials in our 
current returned sample collection (see Section 2.1), these areas are prime candidates for 
sample-return or in situ dating missions to acquire absolute ages of these benchmark basins. 
Although the Nectaris and Crisium basins have experienced both basaltic infill and erosion, 
their original multiring morphologies are still recognizable. Updated geologic maps of the 
Nectaris basin and its surrounding terrain identify small plains near inner-basin ring massifs 
and inter-massif “draped” deposits as possible remnants of the Nectaris basin impact melt 
sheet (Smith and Spudis 2013; Spudis and Smith 2013). Similar efforts also identified small 
kipukas of the Crisium basin impact melt sheet, based on their morphology and composition 
(Spudis and Sliz 2017). In both Nectaris and Crisium, these small areas occur between the 
inner and outer basin rings. Some of the exposures exhibit cracked and fissured morphologies 
consistent with those at fresh craters (such as Tycho and King craters; Howard and Wilshire 
1975) and older impact melts (e.g., Orientale; Wilhelms 1987; Spudis et al. 2014), and show 
embayment by subsequent mare basalt flows. The compositions of these areas, determined 
from Clementine data, indicate that they have less FeO than the surrounding basalts, attesting 
to their affinity to lunar highlands that were the pre-existing target materials. If these are 
indeed areas of preserved Nectaris or Crisium impact melt, such sites would be unique among 
basins as in situ impact melt exposures. In contrast to attempts to identify impact melt rocks 
thrown from the basin to distant sites like Apollo 17 or Luna 20, regolith formed atop an 
impact melt substrate would contain a majority of impact-melt rocks—more similar to finding 
basaltic materials in the regolith developed over Mare Tranquilitatis at Apollo 11.
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As the oldest stratigraphically recognizable basin on the Moon, the SPA age anchors the 
early impact flux curve. The crater density on SPA ejecta is a factor of two higher than Nectaris, 
implying that the SPA basin did not form during the period of the lunar cataclysm, but instead 
formed during an earlier phase of lunar history (Marchi et al. 2012). The composition of the 
SPA interior is well-preserved in orbital remote sensing (Jolliff et al. 2000), providing a means 
to establish provenance for such samples. Impact-affected rocks derived from younger basins 
such as Apollo, Poincaré, Planck, Ingenii, Orientale and Schrödinger, as well as other large 
impact craters, would also contribute to establishing an impact chronology far from Imbrium 
that is bounded by the earliest and the latest of the recognized lunar impact basins. Sample 
return from major lunar basins continues to be a high priority goal in global lunar strategy 
documents (National Research Council 2003, 2007, 2011; Lunar Exploration Analysis Group 
2017; International Space Exploration Coordination Group 2018).

Expanding the absolute chronological framework for the post-basin era will require 
additional radiometric dating of samples with well-established provenance, including young 
mare basalts and key stratigraphic craters such as Copernicus and Kepler (Ryder et al. 1989; 
Hiesinger et al. 2000; Morota et al. 2011; Öhman and Kring 2012; Krüger et al. 2016). 
In addition, continued work is needed to determine the geologic provenance of Apollo and Luna 
sampled units to understand sample ages, for example, understanding the Crisium lava flows 
and relating them to the Luna 24 samples (Nielsen and Drake 1978; Papike and Vaniman 1978).

Understanding the sources of projectiles bombarding the Moon projectile sources will 
also have important implications for understanding the dynamics of populations and temporal 
evolution of the Solar System. Such work may include returning samples from known 
basin impact melt deposits to help constrain both the nature of the projectile and when it 
struck the Moon, as well as searches for intact meteorite fragments. Promising targets for 
such searches include geochemical or physical anomalies related to impacts, for example, 
magnetic anomalies surrounding the South Pole-Aitken basin that may be concentrations of 
surviving impactor debris from nearside basins (Wieczorek et al. 2012), and impact crater 
central peaks with unusual mineralogical signatures that may be preferential sites for surviving 
projectiles (Yue et al. 2013). New laboratory methods to constrain the ages of regolith soils 
and breccias would be useful in understanding the temporal record of projectile delivery. 
The best temporally constrained records of regolith age are likely to be preserved in trapped 
ancient “paleoregolith” horizons found sandwiched between layers of radiometrically datable 
geological units such as lava flows, pyroclastic deposits, impact melt flows or ejecta blankets 
(Crawford et al. 2010; Fagents et al. 2010; Rumpf et al. 2013). However, such geological 
settings would require deep drilling (tens to hundreds of meters) capabilities to access the 
subsurface (Crawford et al. 2007; Crawford and Joy 2014).

Current lunar regolith gardening rates are derived from data taken near the Moon’s equatorial 
plane. At high latitudes, where permanently shadowed regions exist, the meteoroid fluxes and 
subsequent impact gardening rates could be considerably different. A comprehensive model of 
lunar bombardment including all known sporadic sources such as the northern and southern 
toroidal sources would better address the impact gardening rates in these permanently shadowed 
regions. Continued operation of the LRO extended mission, as well as new missions with high-
resolution imaging capabilities, increase the likelihood of finding more and larger impact events, 
helping better compare the recent flux with crater counting estimates. Lengthening the time 
difference between imaging sites under identical lighting conditions by LRO would improve the 
chances of imaging sites under different photometric geometries to help identify new craters.
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APPENDIX—RECENT DEVELOPMENTS

Since the discovery of the Moon’s asymmetric ejecta cloud, the origin of its sunward-
canted density enhancement has not been well understood. Szalay et al. (2020) have proposed 
that Beta-meteoroids that hit the Moon’s sunward side could explain this unresolved 
asymmetry. Beta-meteoroids are submicron in size, comparable to or smaller than the regolith 
particles they hit and can impact the Moon at very high speeds ~100 km s−1. This finding 
suggests that Beta-meteoroids may also contribute to the evolution of other airless surfaces in 
the inner solar system, and by extension, at exozodiacal systems. 

REFERENCE

Szalay JR, Pokorný P, Horányi M (2020) Hyperbolic meteoroids impacting the Moon. Astrophys J Lett 890:L11


