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1. INTRODUCTION

The Moon is a unique body in our Solar System that allows us to groundtruth remote-
sensing data (e.g., crater size–frequency distributions, or CSFDs, crater/rock degradation rates, 
mineralogy, composition) of the Apollo and Luna landing sites with well-characterized samples 
that have been investigated and dated in terrestrial laboratories (e.g., Hartmann 1966; Greeley 
and Gault 1970; Papanastassiou and Wasserburg 1971; Soderblom 1972; Husain 1974; Nunes 
et al. 1974; Schaefer and Husain 1974; Tera and Wasserburg 1974; Tera et al. 1974; Neukum 
et al. 1975a,b; Boyce 1976; Neukum and Horn 1976; McGill 1977; Neukum 1977a,b; Boyce 
and Johnson 1978; Maurer et al. 1978; Guggisberg et al. 1979; Ryder and Spudis 1980; BVSP 
1981; Taylor et al. 1983; Dasch et al. 1987; Wilhelms et al. 1987; Nyquist and Shih 1992; 
Neukum and Ivanov 1994; Hiesinger et al. 2000, 2003, 2010, 2011, 2012a,b; Lucey et al. 2000; 
Nyquist et al. 2001; Gaffney et al. 2008; Haruyama et al. 2009; Marchi et al. 2009; Morota et 
al. 2009; Ghent et al. 2014; Robbins 2014; Trang et al. 2015; Sato et al. 2017). Calibrations 
between landing site remote-sensing observations and samples enables us to extrapolate age 
determinations and compositional analyses to any area on the Moon using remote-sensing data.

One fundamentally important calibration allowed the derivation of the lunar chronology 
function that links the cumulative CSFD at a reference diameter with the radiometric and exposure 
ages of lunar samples (e.g., Hartmann 1970a,b; Neukum 1983; Neukum et al. 2001; Stöffler et al. 
2006; Robbins 2014). The lunar chronology function is critical for the understanding of at least 
the inner Solar System, because it is extrapolated to provide not only ages of unsampled regions 
on the Moon but also of other planetary bodies. Although we have samples from Mars (SNC 
meteorites) and asteroid Vesta (HED meteorites), we do not know their exact provenance, making 
it impossible to link their radiometric ages with CSFDs, and thus directly derive chronology 
functions for these bodies. Consequently, it is fundamental to correctly interpret the available 
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lunar samples, their provenances, and their radiometric and exposure ages; as well as the CSFD 
measurements from the sites from which these samples were collected.

Many lunar missions in the last decade (e.g., Chandrayaan-2, SELENE, Lunar 
Reconnaissance Orbiter, Chang'E series) carried/carry high-resolution digital cameras with 
the goal to globally image the Moon, meaning that the database for CSFD measurements has 
continuously improved. Today global imaging coverage exists at 100 m/pixel for different 
illumination conditions, and there is widespread coverage down to ~0.5 m/pixel scales (e.g., 
Robinson et al. 2010), allowing for measurement of highly precise crater statistics at multiple 
scales and detailed studies of the cratering process (see also Cohen et al. 2023; Osinski  et al. 
2023, both this volume).

This chapter provides an introduction to CSFD measurements and presents a review of the 
work performed on dating lunar geological units using CSFDs since the last New Views of the 
Moon volume (2006), including various volcanic and tectonic features, as well as individual 
impact craters. At the end of the chapter, implications for the new CSFD age determinations 
for the geologic history and evolution of the Moon are discussed.

2. CRATER SIZE-FREQUENCY DISTRIBUTION MEASUREMENTS

2.1. Historic perspective

Detailed investigations of the lunar surface led to the definition of time-stratigraphic systems, 
i.e., the pre-Nectarian, Nectarian, Imbrian, Eratosthenian, and Copernican System (e.g., Neukum 
1983; Wilhelms et al. 1987; Neukum et al. 2001; Stöffler and Ryder 2001). For example, using 
the ejecta deposits of impact craters as stratigraphic marker horizons similar to volcanic ash 
(bentonite) beds on Earth coupled with the relative spatial density of craters on different surfaces, 
Wilhelms et al. (1987) constructed a moonwide relative stratigraphy by investigating the 
superposition of ejecta deposits. Application of the superposition approach to mare basalt units 
(e.g., Head 1976; Whitford-Stark 1979; Whitford-Stark and Head 1980) provided relative ages 
for the entire lunar surface. The determination of relative ages is one of the most important tools 
in geologic mapping and the interpretation of geologic processes on the Moon. For example, 
bright rays and topographic freshness were used as criteria to assign a Copernican age to craters 
(e.g., Wilhelms 1987). On the basis of their CSFD measurements on bright ray craters, Werner 
and Medvedev (2010) proposed that the transition between the Eratosthenian and the Copernican 
systems occurred 750 Ma ago. In addition, bright ray craters were also used to study the cratering 
rate in the last few hundred million years (Grier et al. 1999). On the basis of Clementine maturity 
maps, Grier et al. (1999) determined relative ages of rayed craters and concluded that there is no 
evidence for a change in the cratering rate since Tycho (~109 Ma; Grier et al. 1999) compared to 
the cratering rate since Copernicus (~810 Ma; Grier et al. 1999). However, Hawke et al. (2004) 
demonstrated that bright rays can be due to differences in maturity (e.g., Messier), composition 
(e.g., Lichtenberg), or a combination of both (e.g., Tycho, Olbers A).

Several techniques have been developed to quantitatively extract temporal information 
from impact craters, including crater degradation and CSFDs. Crater degradation was used to 
infer relative and absolute ages of geologic units on the Moon (e.g., Pohn and Offield 1970; 
Trask 1971; Soderblom and Lebofsky 1972; Boyce and Dial 1975; Head 1975; Boyce and 
Johnson 1978; Fassett 2013; Fassett and Thomson 2014; Ghent et al. 2014; Trang et al. 2015; 
Basilevsky et al. 2018; Fassett et al. 2018). Data derived from crater degradation stages can 
give model ages for the lunar surface, but numerous endogenic and exogenic processes can 
influence the appearance of lunar impact craters, decreasing the certainty of age assignments 
from that method. In addition, there are some discrepancies between crater degradation-based 
ages and radiometric ages for specific landing sites. Burgess and Turner (1998), for example, 
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reported young radiometric 40Ar–39Ar ages (3.2–3.3 Ga) for the Luna 24 landing site, which 
disagree with ages derived from crater degradation measurements (3.5 ± 0.1 Ga) by Boyce and 
Johnson (1978). Thus, Burgess and Turner (1998) concluded that crater degradation ages of 
the Luna 24 landing site have to be reassessed.

Because impact cratering is to a first-order a spatially random process, the number and 
size of superposed craters on a given geologic unit/surface is directly related to the geologic 
time since the formation of this surface (e.g., Öpik 1960; Shoemaker 1962; Baldwin 1964; 
Neukum and Ivanov 1994; Hiesinger et al. 2000, 2003, 2010; Hartmann and Neukum 2001; 
Ivanov 2001; Neukum et al. 2001; Stöffler and Ryder 2001; Stöffler et al. 2006). Öpik (1960) 
was among the first to pioneer dating of planetary surfaces with crater spatial densities, yielding 
relative ages of surface units. After the Apollo and Luna samples became available and were 
isotopically dated, Hartmann (1970b) linked them with crater spatial densities to derive a lunar 
chronology that yields absolute model ages (AMAs) of the studied units. Other early studies of 
the link between isotopic ages and crater spatial densities include those by Hartmann (1970a,b), 
Baldwin (1971), and Bloch et al. (1971), Neukum and Wilhelms (1972), Neukum et al. (1972, 
1975b), and Soderblom and Boyce (1972). Extrapolating the terrestrial cratering record to the 
Moon, Hartmann (1965) successfully predicted that lunar mare regions should be approximately 
3.6 Ga old. This prediction was later confirmed by radiometric ages of the lunar samples. Thus, 
these studies allowed for the first time the investigation of the geologic evolution of a planetary 
body with absolute, rather than just relative, time (Werner and Ivanov 2015).

2.1.1. CSFD measurement method. CSFD measurements for the estimation of surface 
ages involves several parts: (1) measurement of craters in a homogeneous (e.g., morphology, 
albedo, topography, spectra) region of interest, (2) fitting of the distribution to a production 
function (PF) to determine a crater spatial density for a reference crater diameter, and 
(3) solving a chronology function with the reference crater spatial density to get an absolute 
model age. Detailed descriptions of this technique can be found, for example, in Neukum and 
Ivanov (1994), Hiesinger et al. (2000, 2003, 2010), Hartmann and Neukum (2001), Ivanov 
(2001), Neukum et al. (2001), Stöffler and Ryder (2001), Stöffler et al. (2006), Werner and 
Ivanov (2015), and Robbins et al. (2018).

2.1.2. Measurement of craters. To obtain the age of a photogeologically homogeneous 
unit, one has to (1) measure the surface area of the unit, and (2) measure the diameters of each 
primary impact crater within this unit. Traditionally, obtained crater diameters were binned and 
plotted, for example, as cumulative distributions (e.g., Crater Analysis Techniques Working 
Group 1979), which give the number of craters larger than or equal to a certain diameter per 
area measured. Today, computational capabilities allow for an un-binned treatment of crater 
spatial densities to avoid potential artifacts introduced by data binning (e.g., Michael et al. 
2016; Robbins et al. 2018).

2.1.3. Factors affecting CSFDs. Several factors that affect CSFD measurements must 
be taken into account when deriving absolute model ages (AMAs). These factors can be 
divided into two different categories: (1) method-specific factors, including image quality, 
illumination geometry, count area size, and variability of crater detection among researchers, 
and (2) geology-specific factors, such as an asymmetrical impact rate (e.g., Morota and 
Furumota 2003; Gallant and Gladman 2006; Gallant et al. 2009; Ito and Malhotra 2010; 
Werner and Medvedev 2010; Kawamura et al. 2011; Le Feuvre and Wieczorek 2011; Werner 
and Ivanov 2015), geology-based count area selection (e.g., Hiesinger et al. 2000, 2003, 2011), 
regional and local slopes (e.g., Basilevsky 1976; Meyer et al. 2016), crater degradation effects 
(e.g., Soderblom 1970; Schultz et al. 1977; Basilevsky et al. 2014; Fassett and Thomson 2014; 
Basilevsky 2015; Yasui et al. 2015; Xie et al. 2017; Mahanti et al. 2018; van der Bogert et 
al. 2018b), layering (e.g., Wünnemann et al. 2012), gravity/strength-scaling effects (e.g., 
Young 1975; Melosh 1989; Ivanov 2006; Dundas et al. 2010; van der Bogert et al. 2017), 
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and the occurrence of endogenic, secondary, and/or self-secondary craters (e.g., Shoemaker 
1962; König 1977; Neukum 1983; Bierhaus et al. 2005, 2018; Hartmann 2005; McEwen et 
al. 2005; Malin et al. 2006; McEwen and Bierhaus 2006; Neukum et al. 2006; Werner 2006; 
Hartmann et al. 2008; Wagner et al. 2010; Speyerer et al. 2016; van der Bogert et al. 2016).

2.1.4. Production function. The CSFD of an area of interest is fit with a lunar production 
function (PF) to determine the crater density at a given reference diameter, usually 1 or 10 km 
(e.g., Neukum 1983; Neukum et al. 2001; Ivanov and Hartmann 2007). The PF is a model, 
either empirical or from first principles, that represents the shape of the CSFD for primary 
craters. The match or mismatch of a measured CSFD to the shape of the PF gives one test of 
the quality of the CSFD measurement. The crater spatial density of a geologic unit is directly 
related to the time the unit was exposed to the meteoroid flux and therefore gives a relative age 
of this unit. The PF is often assumed to be constant in space and time, although work has been 
done to understand and correct for a potential asymmetrical impact rate due to the lunar orbit 
(e.g., Le Feuvre and Wieczorek 2011 and references therein) or temporal changes (Orgel et 
al. 2018). Linking the CSFD at the lunar sample return landing sites at the selected reference 
diameter with radiometric and exposure ages of the samples enables derivation of an empirical 
chronology function (CF) (e.g., Hartmann 1970a,b; Neukum 1983; Neukum and Ivanov 1994; 
Neukum et al. 2001; Robbins 2014). Once this function is derived, it is possible to estimate 
AMAs across the entire lunar surface.

A crucial prerequisite for the development of the lunar chronology is a solid understanding 
of the size–frequency distribution (SFD) of primary impact craters or PF on the Moon (Fig. 1), 
which describes the expected crater size–frequency measured on a geologic unit at a specific 
time. Ideally, such a distribution is determined from large, homogeneous surfaces that have 
not been disturbed by any subsequent geologic process since their formation. However, the 
derivation of the true crater size distribution is not trivial, because the measurements might 
be affected by differential crater degradation, resurfacing, secondary craters, target properties, 
variable impact velocities, impactor properties, as well as inaccurate mapping and crater 
counting (Robbins 2014; Werner and Ivanov 2015). Due to these complications, several 
PFs have been developed over the years. For example, Hartmann (1969, 1970a), Neukum 
et al. (1975a,b), and Neukum (1983) proposed early versions of the PF and these have been 
summarized by Hartmann et al. (1981). Early results suggested that the PF of lunar craters 
could be described as power laws of various slopes (e.g., Shoemaker et al. 1970; Baldwin 
1971; Hartmann 1971; Hartmann et al. 1981). However, these power laws only worked for 
specific crater sizes, but not the entire range of crater diameters. Today, the most commonly 
used PFs are those of Hartmann (1999, 2005) (HPF) and Neukum et al. (2001) (NPF). Thus, 
we will focus on these two PFs.

2.1.5. Hartmann Production Function (HPF). Hartmann (1999) shows his PF in a log-
incremental representation with a √2 diameter bin size. To fit the observed crater distribution, 
Hartmann (1999) applied power laws to three diameter intervals:

log NH = −2.198 – 2.20 log DL   for DL > 64 km

log NH = −2.920 – 1.80 log DL    for 1.41 < DL < 64 km

log NH = −2.616 – 3.82 log DL    for 0.3 < DL < 1.41 km

The physical reasoning behind three power laws comes from collisional physics, where 
collisions tend to produce fragments with an SFD described by a power law. For the derivation 
of these power laws for mare units, Hartmann (1999) used the crater catalogs of Arthur (1963) 
and Arthur et al. (1965a,b, 1966), which includes craters larger than 4 km. Hartmann (1984) 
proposed that the observed CSFD on such mare units reaches equilibrium for craters of about 
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300 m and smaller, i.e., that any newly formed crater will destroy older craters. According to 
this PF, the average age of mare units is on the order of 3.4–3.5 Ga (Hartmann and Neukum 
2001; Hartmann 2005).

2.1.6. Neukum Production Function (NPF). In several publications, Neukum showed 
that lunar crater distributions measured on geologic units of different ages and in overlapping 
crater diameter ranges could be aligned along a complex continuous curve (e.g., Neukum 
1983; Neukum and Ivanov 1994; Neukum et al. 2001). The lunar NPF is given by an 11th 
degree polynomial

log Ncum =a0+ ak

11

k=1

( log D)k (1)

where a0 represents the amount of time during which the unit has been exposed to meteoroid 
bombardment (Neukum 1983; Neukum and Ivanov 1994; Neukum et al. 2001). N is the 
number of craters larger or equal to D per square kilometer per billion years. The polynomial 
representation is mathematical, rather than based on physical principals. Compared to the 
PF of Neukum (1983), Neukum et al. (2001) slightly reworked their PF for craters < 200 km 
in diameter. This resulted in a new set of coefficients k for equation (1), which are given in 
Table 1. Because the NPF is a large-degree polynomial function, its validity is constrained to 
the diameter range of 0.01 km < D < 300 km (Neukum 1983) and to 0.1 km < D < 100 km 
(Neukum et al. 2001).

Figure 1. Four different model production functions (Werner and Ivanov 2015).
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Table 1. Coefficients of the lunar production function as defined by Neukum (1983) 
and Neukum et al. (2001).

an Neukum (1983) Neukum et al. (2001)

a0 −3.0768 −3.0876

a1 −3.6269 −3.557528

a2 +0.4366 +0.781027

a3 +0.7935 +1.021521

a4 +0.0865 −0.156012

a5 −0.2649 −0.444058

a6 −0.0664 +0.019977

a7 +0.0379 −0.086850

a8 +0.0106 −0.005874

a9 −0.0022 −0.006809

a10 −5.18 × 10−4 +8.25 × 10−4

a11 +3.97 × 10−5 +5.54 × 10−5

2.1.7. Discussion of production functions. The overall shapes of the HPF and the NPF 
are rather similar, although they differ significantly for craters of 1–2 km to 25 km (e.g., Ivanov 
2001; Neukum et al. 2001; Werner and Ivanov 2015). Both assume that the SFDs of incoming 
projectiles remained the same for the last 4 Ga, a view that has been challenged by several 
authors (Strom and Neukum 1988; Strom et al. 1992, 2005; Bottke et al. 2007; Head et al. 
2010; Fassett et al. 2012; Marchi et al. 2012; Morbidelli et al. 2012a,b). Among others, Strom 
et al. (1992, 2005) proposed that the PF after the emplacement of the lunar mare is different 
from the PF before 3.8 Ga during the Late Heavy Bombardment, which led them to propose 
that two separate populations of impactors must be responsible for lunar cratering. However, 
there is no agreement among these authors concerning the exact timing of this transition. 
Head et al. (2010) proposed that the transition occurred during the Imbrian System at less than 
3.9 Ga, close to the Orientale basin event. In contrast to that study, Fassett et al. (2012) argued 
for a transition between two impact crater populations before the mid-Nectarian period, before 
the end of the period of rapid cratering and before the putative lunar cataclysm.

In addition, there appears to be no agreement concerning the number of identified 
populations. For example, Marchi et al. (2012) suggested a third population, which is different 
from the early highland-cratering population and the later mare-cratering population. This 
third population might have been the result of very fast impactors that impacted the Moon at 
twice the velocity of impactors in the early population. The source of these fast projectiles 
might have been the ancient E-belt at the inner margin of the asteroid belt postulated by 
Bottke et al. (2012) and Morbidelli et al. (2012b). This is another inconsistency among the 
proponents of several impactor populations because Strom et al. (2005), Head et al. (2010), 
and Fassett et al. (2012) concluded that the Late Heavy Bombardment came from the entire 
Main Asteroid Belt and not just a specific region, although Ćuk et al. (2010) argued that the 
Main Asteroid Belt cannot be the source for lunar cataclysm impactors. Provided the lunar PFs 
did not change with time, this implies that the Moon was bombarded with only one impactor 
population or several populations that shared the same SFD, whereas a time-variable PF 
indicates that more than one impactor population is responsible for lunar craters (e.g., O’Brien 
and Greenberg 2003). Collisional evolution tends to yield similar SFDs with time and, thus, 
could explain multiple impactor populations with the same SFD (Bottke et al. 2005). For 
example, investigating impact craters on Mercury larger than 20 km, Neukum and Ivanov 
(1994) found a striking similarity in the characteristics of the SFDs of both planetary bodies. 
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Thus, if we assume DMercury = 1.6 × DMoon (Neukum and Ivanov 1994), the Moon and Mercury 
share the same mass–velocity distribution of crater-producing projectiles. Recent dynamical 
models of the evolution of small Solar System bodies suggest that the velocities and SFDs of 
projectiles might have varied during the first billion years (e.g., Bottke et al. 2012; Morbidelli 
et al. 2012b), supporting the hypothesis of more than one impactor population. However, on the 
basis of an investigation of crater populations of 30 lunar basins (≥ 300 km) with buffered non-
sparseness corrected CSFD measurements, Orgel et al. (2018) found that contrary to previous 
studies (e.g., Strom et al. 1992, 2005; Head et al. 2010; Fassett et al. 2012), the shapes of Pre-
Nectarian (including SPA), Nectarian (including Nectaris), and Imbrian (including Imbrium) 
basins show no statistically significant differences. Thus, on the basis of that study, there is 
no evidence for changes in the impactor population (Orgel et al. 2018), although it cannot be 
excluded that there might be multiple populations with the same SFD.

2.2. Saturation equilibrium

Any given inactive surface exposed to meteoroid bombardment accumulates an 
increasingly large number of craters with time until a point when newly formed craters destroy 
an equal number of preexisting craters (e.g., Shoemaker 1965; Gault 1970; Woronow 1977; 
Woronow et al. 1982; Hartmann 1984; Richardson 2009; Hirabayashi et al. 2017). In this case, 
the crater density reaches an upper limit, known as saturation equilibrium (SEQ). The slope 
of a CSFD in equilibrium is typically less than that for a CSFD exhibiting crater production 
(consistent with the PF). Though the specifics of SEQ have been debated, many studies note that 
SEQ is present in crater populations with relative crater spatial density or R values between 0.1 
and 0.3, or 1–10% of a condition called geometric saturation, wherein craters are hexagonally 
close-packed (Gault 1970; Hartmann 1984; Chapman and McKinnon 1986; Hartmann and 
Gaskell 1997; Richardson 2009; Kirchoff 2018). Povilaitis et al. (2018) produced maps that 
show regions of the Moon with R ≥ 0.3 (>10% geometric saturation or Ngs) for several diameter 
bins. These areas represent candidates for SFDs that may be in SEQ, which are particularly 
useful for evaluating the ancient cratering history of the Moon (e.g., Xiao and Werner 2015), 
because older surfaces are expected to exhibit SEQ up to larger crater diameters. This analysis 
does not preclude other areas with lower relative crater spatial densities from also exhibiting 
SEQ, for example those exhibiting 1% Ngs identified by Xiao and Werner (2015).

A CSFD exhibiting an equilibrium condition cannot be fit with a PF. However, SEQ occurs 
at different times for craters of different diameters, i.e., smaller craters reach the SEQ state 
more quickly than larger craters, due to the steeper slopes of a PF versus a population in 
equilibrium. Thus, if a sufficiently large count area is available, it might be possible to derive 
an AMA on the basis of larger craters, while smaller craters are in SEQ and do not provide 
temporal information. The ability to fit ages, although relative crater frequencies exceed some 
proposed levels for SEQ, is supported by the work by Xiao and Werner (2015), who concluded 
that arbitrary equilibrium spatial densities are not suitable to evaluate the presence of an 
equilibrium condition. In their study, Xiao and Werner (2015) observed crater populations that 
are in equilibrium, although their R values are less than 1% Ngs, which has been regarded as 
the minimum empirical equilibrium density level (Gault 1970). Numerical models (Kirchoff 
2018) indicated that crater populations with shallow to moderate cumulative SFD slopes will 
become more spatially uniform (i.e., more evenly spaced) as they approach and reach SEQ. 
Richardson (2009) found the shapes of CSFDs for heavily-cratered lunar regions (on all scales) 
to be consistent with a Main Belt asteroid impactor population. He also found that these regions 
represent a crater population, which is in equilibrium, but which also continues to reflect, or 
follow the impactor/production population, which originally produced it (Richardson 2009). 
Povilaitis et al. (2018) presented CSFDs of large craters that exceed 10% Ngs, but still fit the PF. 
These CSFDs might be linked to potential major impact events that show AMAs of about 4.13, 
4.15, 4.19, and 4.28 Ga. In these cases, the relative density of the largest craters approaches 
equilibrium levels suggested by Woronow (1977) and Woronow et al. (1982). Smaller craters 
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are subject to several degradational geological processes, including impact swarms, seismic 
shaking, and regolith processes (e.g., Schultz et al. 1977; Xiao and Werner 2015), whereas 
the largest basins are more difficult to completely erase. Thus, the size dependency of these 
processes suggests that SEQ is a size-dependent process, which cannot be easily modeled as a 
simple power law. In addition, the non-constant slope of the production population could result 
in equilibrium populations with slopes other than ~ –2 (e.g., Woronow 1977; Richardson 2009; 
Xiao and Werner 2015; Kirchoff 2018).

Richardson (2009) proposed two mechanisms that limit the number of countable craters 
at or near SEQ. In the first case of a steep PF (N ~ D–n, n > 2), which is typical for lunar craters 
smaller than ~1.5 km, small craters can erase larger craters (“sandblast regime”). In this case, 
the slope of the CSFD is limited to N ~ D–2 for all slope indices n > 2. In the second case of a 
shallow PF (N ~ D–n, n ≤ 2), the main mechanism is the episodic resurfacing by the largest crater 
(“cookie-cutting regime”). In this case, the ejecta deposit of a large crater resurfaces adjacent 
terrain and the fresh surface again starts accumulating craters, reproducing the primary PF (e.g., 
Woronow 1978; Chapman and McKinnon 1986; Werner and Ivanov 2015). Hartmann (1984) 
proposed that craters in SEQ follow a power law of N ~ D–1.83 that approximately fits both steep 
(n > 2) and shallow (n ≤ 2) branches of CSFD.

Craters in SEQ are less randomly distributed than craters outside SEQ (Squyres et al. 
1997; Kirchoff 2018). Thus, randomness analyses of the measured CSFD are necessary to 
identify such a behavior, as well as the effects of secondary cratering, which also tends to 
produce crater clusters and chains, i.e., a non-random distribution of craters (e.g., Michael 
et al. 2012). Although efforts to understand the process of equilibrium saturation have been 
made, there are numerous remaining unsolved problems (Hirabayashi et al. 2017). A new 
analytical model considers three processes that contribute to SEQ: (1) cookie-cutting (i.e., 
simple geometric overlap), (2) ejecta deposition, and (3) sandblasting (i.e., diffusive erosion) 
(Hirabayashi et al. 2017). The results of Hirabayashi et al. (2017) indicate that the power law 
of the equilibrium slope is independent of that of the PF slope in cases when the slope of the 
PF is steeper than that of the equilibrium state.

High resolution Narrow Angle Camera Digital Terrain Models (NAC DTMs) allow us to 
quantitively study small crater degradation fractions in equilibrium—see, e.g., Basilevsky et 
al. (2014) and Mahanti et al. (2018). Comparing CSFDs for small craters with Neukum et al.’s 
(2001) chronology (see Eqn. 2 below), we can estimate the time to reach a given degradation 
state, measured, for example, with the depth/diameter ratio, d/D, derived from high-resolution 
DTMs. For example, at the Apollo landing sites it takes small craters (D < 100 m) ~ 3 to 7 Ma 
to reach d/D > 0.06, using the PF and CF of Neukum et al. (2001) (Ivanov 2018). Mahanti et 
al. (2018) discussed the difference in degradation rates between Apollo landing sites. On the 
basis of their study of lunar impact craters (800 m to 5 km) and the application of a topographic 
diffusion model, Fassett and Thomson (2014) proposed that after 3 Ga the initial depth of a 
1 km diameter crater is reduced to about 52%, whereas the depth of a 300 m diameter crater 
is reduced to about 7%, of its original depth. Smaller craters are degraded beyond recognition 
(Fassett and Thomson 2014). The model of crater degradation of Xie et al. (2017, 2019) has 
been used to study the effect of topographic degradation on CSFD measurements and the results 
suggest that topographic degradation might have significant effects on the shapes of PFs.

2.3. Chronology function

One of the major geologic goals of the Apollo missions was to return lunar samples, 
which could be dated in the laboratory with radiometric techniques (e.g., Rb–Sr, Sm–Nd, 
Ar–Ar). Together with CSFD measurements of the landing sites, they are the prerequisites to 
derive the lunar cratering chronology (e.g., BVSP 1981; Neukum 1983; Strom and Neukum 
1988; Neukum and Ivanov 1994; Stöffler and Ryder 2001; Marchi et al. 2009; Robbins 2014). 
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For this purpose, CSFD measurements for the Apollo 11, 12, 14, 15, 16, 17, and the Luna 16 
and 24 landing sites were performed and correlated with the corresponding radiometric ages 
of these sites (e.g., BVSP 1981; Neukum 1983; Strom and Neukum 1988; Neukum and Ivanov 
1994; Stöffler and Ryder 2001; Marchi et al. 2009; Robbins 2014). However, this is not a 
trivial task and has led to several somewhat different chronologies (e.g., BVSP 1981; Neukum 
1983; Neukum and Ivanov 1994; Stöffler and Ryder 2001; Stöffler et al. 2006; Marchi et 
al. 2009; Robbins 2014 and references therein). It is well known that lunar samples of each 
landing site show a range of radiometric ages, which is due to an unknown combination of 
vertical and horizontal mixing (BVSP 1981). Thus, if the investigated sample is a breccia, the 
individual particles can reflect very different geologic histories and reset ages. For example, 
for breccia 73215, Jessberger et al. (1977) reported variations in the K–Ar ages of up to 300 
Ma, which raises the issue of which radiometric age should be assigned to the corresponding 
CSFD. In principle, there are two possibilities to correlate CSFDs with radiometric ages, i.e., 
the correlation with the most frequently measured age (e.g., Neukum et al. 1975a; Neukum 
1983; Neukum and Ivanov 1994) or with the youngest age (e.g., Jessberger et al. 1974; BVSP 
1981; Wilhelms et al. 1987). Neukum (1983) and Neukum and Ivanov (1994) argued that the 
“peak age” is the age that most likely reflects the major event/impact that reset the radiometric 
clocks of most samples, whereas the youngest age might only represent smaller local impacts 
that occurred after the main impact. The reasoning for adopting the peak age is discussed in 
greater detail by Neukum and Ivanov (1994).

As mentioned before, over the last few decades several chronology functions (CFs) have 
been proposed (e.g., BVSP 1981; Neukum 1983; Strom and Neukum 1988; Neukum and 
Ivanov 1994; Stöffler and Ryder 2001; Marchi et al. 2009; Robbins 2014; Fig. 2). As it is 
impossible to describe each CF in detail in this chapter, we point the reader to the original 
publications and focus on the description of the most widely used CF, i.e., the CF of Neukum 
and co-workers. The empirically derived chronology of Neukum and Ivanov (1994) and 
Neukum et al. (2001), is given by

Ncum  (D ≥ 1 km) = 5.44 × 10–14 (exp  (6.93 t) – 1) + 8.38 × 10-4 t (2)

Ncum  (D ≥ 1 km)  is the cumulative number of craters equal or larger than 1 km; t is the time since 
the unit has been exposed to the bombardment. Neukum and Wise (1976) and Neukum and 
Ivanov (1994) compared the impact chronologies of several authors (Baldwin 1971, 1974, 1987; 
Neukum 1971, 1977b, 1983; Hartmann 1972; Soderblom and Boyce 1972; Soderblom et al. 
1974; Neukum and Ivanov 1994) and found that the interpretations of these authors all coincide 
within a factor of 2 to 3. Since this evaluation of Neukum and Ivanov (1994), new chronologies 
have been proposed, including those of Marchi et al. (2009) and Robbins (2014). Robbins (2014) 
reported that his revised chronology changes previously established CSFD-based ages by up to 
1 Ga. In particular, Robbins (2014) argued that surfaces younger than ~3.6 Ga and older than 
~3.9 Ga derived with the Neukum et al. (2001) chronology are younger and those in between 
are older in his new system. Some of the Robbins (2014) CSFD measurements were performed 
on large count areas that might violate the homogeneity criteria, however, he also did tests by 
dividing the count areas, which showed that the subdivisions resulted in the same CSFDs, within 
error bars. It remains questionable whether such large areas in fact represent the landings sites, 
reducing the plausibility of correlating these CSFDs with radiometric ages.

Another approach to derive the chronology was proposed by Marchi et al. (2009), who 
modeled the incoming impactor flux and converted it to a SFD of resulting craters, instead of 
directly observing crater sizes and spatial densities on the lunar surface. Marchi PF (MPF) was 
calibrated with CSFDs from Neukum (1983) for regions with known radiometric ages (Marchi et 
al. 2009). The Marchi et al. (2009) chronology fits well data points that are older than Copernicus, 
while it underestimates all younger data points by a factor of 2. Marchi et al. (2009) concluded 
that this might reflect a non-constant impactor flux over the last 3 Ga. Such a non-constant 
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impactor flux might have been caused by the formation of dynamical families in response to 
catastrophic asteroid disruptions (Bottke et al. 2007; Nesvorný et al. 2007).

In any case, once a lunar chronology is established, we can derive AMAs for the entire 
lunar surface from CSFD measurements by solving the function, e.g., Equation (2), for time t 
for Ncum(D ≥ 1 km) measured on the geologic unit to be dated.

2.4. Radiogenic and exposure ages of samples from the landing sites

Stöffler and Ryder (2001) and Stöffler et al. (2006) provided excellent reviews of the 
radiometric and exposure ages of samples that best represent a given landing site for the 
correlation with N(1) or N(10) crater spatial densities. The relevant radiometric ages are shown 
in Table 2. Since the seminal papers of Stöffler and Ryder (2001) and Stöffler et al. (2006), some 
of these measurements have been updated and/or augmented, providing new best estimates for 
landing site surface ages. For example, since 2006, the Ar decay constant has been updated, 
thus, requiring the recalculation of some of the radiometric ages and updating the chronology 
function. This is work in progress, and the most widely used Neukum et al. (2001) chronology, 
as well as the Robbins (2014) chronology, are still based on the radiometric ages published by 
Stöffler and Ryder (2001) and Stöffler et al. (2006). Further information on lunar sample ages 
can be found in Cohen et al. (2023), Head et al. (2023) and Shearer et al. (2023), all this volume.

2.5. CSFD N(1) ages of landing sites

Once the radiometric and exposure ages for the samples are established, CSFD 
measurement areas for their corresponding surface units must be defined. The areas need to 
be large enough to provide a sufficient statistical crater population. Stöffler and Ryder (2001) 
and Stöffler et al. (2006) provided a comprehensive review of CSFDs and crater degradation 
values used for the derivation of the lunar chronology. Since their work, new N(1) values have 
been derived for some of the landing sites. The new analyses were performed via updated 
geological mapping and CSFD measurements of the landing regions with image and spectral 
data from recent lunar missions (Robbins 2014; Iqbal et al. 2019a,b, 2020a,b). Iqbal et al. 
(2019a,b 2020a,b) also reviewed new and updated radiometric sample ages to check their 
correlation with the new geological maps and CSFD results.

Figure 2. Different chronology functions fit to samples with radiometric and exposure ages.



The Lunar Cratering Chronology 411

Formation Age (Ga) 
Set a1

Age (Ga) 
Set a2

Age (Ga) 
Set b1

Age (Ga)
Set b2

Ancient highlands (older crust) 4.3–4.55 4.54  ±  0.027

4.35 ± 0.10

SPA 4.293 ± 0.044

Highlands 4.0–4.4

Nectaris Basin 4.10 ± 0.10 3.92 ± 0.03 3.92 ± 0.03

3.85 ± 0.05

A16/Descartes Fm 3.90 ± 0.10 3.92 ± 0.03 3.92 ± 0.03

3.85 ± 0.05

Crisium Basin 3.89 ± 0.02 3.84 ± 0.04

Serenitatis Basin 3.98 ± 0.05 3.89 ± 0.01 3.87 ± 0.03 3.934 ± 12

A16/Cayley Fm. 3.85 ± 0.02 3.77 ± 0.02

Imbrium Apennines 3.91 ± 0.10 3.85 ± 0.02

A14/Fra Mauro Fm. 3.91 ± 0.10 3.85 ± 0.02 3.77 ± 0.02 3.938 ± 0.005

Imbrium Basin 3.91 ± 0.10 3.85 ± 0.02 3.77 ± 0.02 3.938 ± 0.005

Orientale ejecta blanket ND ND

Orientale Basin 3.72–3.85? 3.72–3.77?

Oldest Mare (Nubium) ND

Mare Nectaris 3.74

M. Tranq., old (A11) 3.72 ± 0.010 3.80 ± 0.02 3.747 ± 0.003

M. Serenitatis (A17) 3.75 ± 0.01 3.767 ± 0.009

M. Tranq., young (A11) 3.53 ± 0.05 3.58 ± 0.01 3.578 ± 0.009

M. Fecunditatis (L16) 3.40 ± 0.05 3.41 ± 0.04

M. Imbrium (A15) 3.28 ± 0.10 3.30 ± 0.02 3.285 ± 0.007

M. Crisium (L24) 3.30 ± 0.10 3.22 ± 0.02

O. Procellarum (A12) 3.18 ± 0.10 3.15 ± 0.04 3.129 ± 0.01–
3.176 ± 0.006

Autolycus 2.1 ± ?

Copernicus 0.85 ± 0.20 0.8 ± 0.015 0.789 ± 0.013

Tycho, A17 0.109 ± 0.004 0.109 ± 0.004

Tycho 0.109 ± 0.004

North Ray Crater 0.05 ± 0.0014 0.053 ± 0.008

Cone Crater 0.026 ± 0.0008 0.025 ± 0.012

South Ray Crater 0.002 ± 0.0002

Terrestrial craters (Phanerozoic) 0.375 ± 0.075 0.375 ± 0.075

Note: Data compiled from various sources by (a1) Hartmann et al. (1981), Neukum (1983); (a2) Ryder and 
Spudis (1987), Wilhelms et al. (1987), Stöffler and Ryder (2001); (b1) Jessberger et al. (1977), Spangler et al. 
(1984), Stöffler et al. (1985), Deutsch and Stöffler (1987), Dalrymple (1991), Stadermann et al. (1991), Nyquist 
and Shih (1992), Burgess and Turner (1998), Snyder et al. (2000), Stöffler and Ryder (2001) and references 
therein; (b2) Recently updated ages; Barra et al. (2006), Grange at al. (2009), Fernandes et al. (2013), Merle et 
al. (2014), Snape et al. (2018, 2019) (see Table 5.10; Stöffler and Ryder 2001).

Table 2. Best estimates of crystallization ages of mare basalt flows and formation ages of geological 
units at the Apollo and Luna landing sites updated from Stöffler et al. (2006).
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Table 3. Compilation of cumulative crater densities for reference areas across the Moon and at 
Apollo landing sites updated from Stöffler et al. (2016).
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Ancient highland 
(older crust)

564–677 3600 ± 1100 920 7851.0(a)

2018.0(b)

South Pole–Aitken 
Basin

254 ± 21

Highlands 132–564

Nectaris Basin 1200 ± 310 1327.0(a) 172 ± 20

400 664.8(b)

A16/Descartes Fm 340  ±  70 87 249.0(a)

250.9(b)

Crisium Basin 570# 145# 114 ± 13

Serenitatis Basin ? ? 334 ± 73

A16/Cayley Fm. 34.7 310(c) 188(f)

Imbrium Apennines 250–480 ? 89 196.8(a)

193.1(b)

A14/Fra Mauro Fm. 250–480 47.7  370 ± 70 94# 259.5(a) 431(e)

267.2(b)

501(c)

Imbrium Basin 26

Orientale ejecta 
blanket

220 ND  220 ± ?

Orientale Basin 20

Oldest Mare 
(Nubium)

ND ND ND ND

Mare Nectaris ND ND ND ND

M. Tranq., old (A11) 200 26.2? 90 ± 18 23 183.6(a)

183.2(b)

81.4(c)

M. Serenitatis (A17) 90 100 ± 30 26# 157.9(a) 106(d)

158.5(b)

6.6(c)

M. Tranq., young (A11) 34 15? 64 ± 20 16 93.00(a) 64.2(a)

93.57(b)

M. Fecunditatis (L16) 15.3 33 ± 10 8.4 32.34(a)

32.57(b)

58.20(c)
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M. Imbrium (A15) 26 8.01 32 ± 11 8.2  54.68(a) 29.8(g)

 55.26(b)

55(c)

M. Crisium (L24) 26 8.17 30 ± 10 7.6  23.35(a)

 23.77(b)

 46.60(c)

Autolycus ND ND ND ND

Copernicus 0.06  13 ± 3 3.3 13.21(a.i) 6.67(b)

13.37(b.i) 6.53(c)

13.48(a.ii)

13.43(b.ii)

Tycho, A17 ND 0.019 0.9 ± 0.18 0.23 0.716(c)

0.704(d)

Tycho .391(a.iii) 0.712 (c)

3.401(b.iii)

1.644(a.iv)

1.712(b.iv)

North Ray Crater ND ND 0.44 ± 0.11 0.11 1.389(a) 0.39(c)

1.421(b) 0.384(c)

0.601(c) 0.426(h)

Cone Crater ND ND 0.21 ± 0.05 0.05 0.697(a) .326(i)

0.7131(b)

0.336 (c)

South Ray Crater 0.0123(c) 0.00895(h)

Terrestrial craters 
(Phanerozoic)

3.6 ± 1.1 9.2 12.67(a.v)

7.655(b.v)

3.835(a.vi)

2.195(b.vi)

Note: (1)Wilhelms et al. (1987); (2) Hartmann et al. (1981); (3) Neukum and Ivanov (1994); # from Neukum 
(1983); (4) (a) Marchi et al. (2009) NEO, (b) Marchi et al. (2009) MBA, (a.i) Copernicus ejecta using NEO, 
(b.i) Copernicus ejecta using MBA, (a.ii) Copernicus floor using NEO, (b.ii) Copernicus floor using MBA, 
(a.iii) Counted small craters using NEO (b.iii) Counted small craters using MBA, (a.iv) Counted large craters 
using NEO, (b.iv) Counted large craters using MBA, (a.v) Terrestrial craters using NEO, (b.v) Terrestrial 
craters using MBA, (a.vi) Young terrestrial craters using NEO, (b.vi) Young terrestrial craters using MBA; 
(c) Robbins (2014); (5) (a) Iqbal et al. (2019a), (b) Iqbal et al. (2020a), (c) Hiesinger et al. (2012a), (d) Iqbal 
et al. (2019b), (e) Borisov et al. (2019), (f) Gebbing et al. (2019), (g) Iqbal et al. (2020b), (h) Gebbing et al. 
(2020) (i) Hiesinger et al. (2015); (6) Orgel et al. (2018); ave. = average; ND = not determined; A = Apollo; 
Fm. = Formation; L = Luna; M. = Mare; O. = Oceanus; Tranq. = Tranquillitatis; a: average mare = 1.88 > 
10–4 craters > 4 km/km2.
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2.6. Data presentation and estimation of cratering model ages

2.6.1. Crater catalogs. Crater catalogs are a valuable resource to study impact processes 
on planetary bodies, including Mars (e.g., Salamuniccar et al. 2011), Mercury (e.g., Fassett 
et al. 2011), Venus (e.g., Herrick et al. 1997), and Ceres (e.g., Hiesinger et al. 2016c). For the 
Moon, several pre-digital catalogs were produced, but in this section of this chapter, we only 
address global modern catalogs. Head et al. (2010) used newly available digital topography 
and image data to analyze the global population of impact craters larger than 20 km. This 
catalog was expanded to craters larger than 5 km (Povilaitis et al. 2018). Wang et al. (2015) 
published a global catalog containing more than 100,000 craters as small as 500 m, identified 
and measured by a hybrid crater detection algorithm. Robbins (2019) also published a global 
catalog of over 2 million craters, 1.3 million of them ≥ 1 km in diameter. For larger crater and 
basin diameters, Neumann et al. (2015) and Evans et al. (2016, 2018) employed combinations 
of GRAIL gravity data (Zuber et al. 2013) and LOLA altimetry data (Smith et al. 2010).

2.6.2. Types of data presentation and binning. Early work on impact crater populations 
seeded a variety of approaches to the presentation of measurements. Those approaches were 
fundamentally similar, their aim being to relate crater diameter to frequency of occurrence, yet 
there was sufficient variation among them to make it difficult to compare results from different 
authors. A workshop held in 1977 attempted to standardize the presentation, reviewing the 
forms then in use and recommending two of them, together with suggestions for binning and 
tabular forms (Crater Analysis Techniques Working Group 1979). Forty years on, four types 

Figure 3. Tested lunar chronology function from Neukum (1983) with three set of data: (a) Neukum 
(1983), (b) Hiesinger et al. (2012a), and (c) Borisov et al. (2019), Gebbing et al. (2019), Iqbal et al. 
(2019a,b, 2020a,b).
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of data presentations remain in common use, including cumulative, differential, incremental, 
and R or “relative”. From the earliest studies, it was evident that the crater size–frequency 
distribution follows a function rather close to a power law with a differential slope of –3. 
It is possible to make use of this knowledge to remove the general trend from the plotted 
distribution in differential form. Such a presentation is known as a relative size–frequency 
distribution plot or R-plot (Fig. 4d), and it enables a better visualization of residual deviations 
from the –3 differential slope, helping to identify more subtle features in the CSFD.

Frequency distributions are typically represented graphically using a histogram, the 
construction of which requires a choice of bin width. The optimal choice of bin width depends 
on the data: if chosen too narrow, the resulting plot is degraded by discretization noise; if too 
wide, some resolution of the distribution shape is lost. In its simplest form, we may plot the 
number of craters within a bin against the bin diameter on log–log axes. This has been known 
as an incremental plot (Fig. 4a) (e.g., Hartmann 1964). A variant of it, known as a differential 
plot (Fig. 4b), divides the number of craters in each bin by the width of the bin. This gives 
the benefit that the y-values on the plot are essentially independent of the choice of bin width, 
enabling easy comparison of datasets plotted with different binnings.

Figure 4. (a) Incremental plot showing crater spatial densities for the lunar epochs shown in Figure 5. 
Bounding line is standard lunar equilibrium (Trask 1966), (b) differential plot showing same. (c) Cumula-
tive plot showing same. (d) Relative or R-plot showing same.
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Use of a cumulative histogram (Fig. 4c) removes the difficulty of the choice of bin width: 
the width may be chosen arbitrarily small or the data left unbinned without degrading the plotted 
distribution shape. No distribution features are lost to the smoothing effect of the binning. Its 
cumulative nature, however, means that variations in one part of the distribution—whether real 
features or statistical artefacts—can propagate across the plot. Because of the near power law 
nature of the CSFD, the magnitude of propagated variations diminishes rapidly, but it remains 
a complication of interpretation of cumulative plots (e.g., Michael and Neukum 2010).

As for the choice of binning, the 1977 workshop recommended the use of bins no larger than 
with a √2 factor between bin boundaries (the scale is always logarithmic). √2 interval systems 
have been commonly used for incremental and R-plots, which is equivalent to about 6.5 bins/
decade (that is 6.5 bins between, e.g., 1 km and 10 km diameter). It is worth noting that, for a 
‘standard’ crater population with a differential size–frequency power law slope of –3, there is a 
roughly 3:1 frequency ratio between craters of diameters occurring near the opposite edges of a 
√2 bin. In other words, a 1 km crater is expected to form three times more often than a 1.4 km 
crater. Researchers using cumulative plots have typically used a finer binning of 18 bins/decade.

While the methods from the 1977 workshop have been in use for over four decades, statistics 
and computers have advanced such that alternative methods might be considered. Robbins et al. 
(2018) introduced a new technique that treats each crater as a probability distribution (such as a 
Gaussian) with the mean centered at the measured diameter and the standard deviation estimated 
from repeatability and replicability studies (e.g., Robbins 2014).  The probability distribution 
from each crater is summed to give the resultant CSFD. By default, this technique produces the 
differential plot, and it can easily be converted to incremental, cumulative, and relative plots. This 
method removes the need for binning, though introduction of the standard deviation parameter 
could be thought of as a form of binning, but it is informed by an actual process (repeatability and 
replicability of crater diameter measurement) rather than an arbitrary bin width.

2.6.3. Fitting of data. After a given time of exposure of a surface to the impact flux, we 
expect to see a crater population corresponding to the PF multiplied by the time of exposure. 
For each of the types of plots shown in Figure 4, we should expect to plot points corresponding 
to the PF, shifted further upwards if the surface is older, or further downwards if younger. 
In Figures 4 and 5, the epoch boundaries defined by Wilhelms et al. (1987) are shown as 
changes of grey tone. It is possible to pre-plot a sequence of isochrons, e.g., 0.01, 0.1, 1 Ga or 
the epoch boundaries as shown, and compare the position of superposed data points to these 
standards to interpret the surface age. Alternatively, we may use a numerical fitting algorithm 
to find the isochron which best fits a given set of points.

Up to now, the PF has typically been defined in one of two forms: either as an incremental 
piecewise power law, or as a cumulative polynomial power law. Either of these can be transformed 
for any of the four styles of plot, but numerical fits using these transformed functions will achieve 
marginally different results in each case. When the number of craters is large and the population 
is unmodified, the differences are negligible. In cases where the number of craters is small, the 
error in fitting will grow. A third approach, which is preferable for small numbers of craters, is to 
make the calculation analytically using Poisson statistics (Michael et al. 2016).

The Poisson approach yields an age and uncertainty based on the assumption that the 
observed population formed as a Poisson process with no loss of craters. In practice, this is 
the same assumption required to fit an isochron to a series of binned data points representing 
a crater population. We know, however, that real measurements often show population loss 
effects, which we see as deviations from the production curve. When examining a very small 
number of craters, it is not possible to observe this type of deviation. The possibility that the 
population has been modified thus always remains.
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Recent years have seen an increased interest in studying resurfacing ages. Some studied 
crater populations indicate that there was a loss of craters at smaller scales while larger craters 
were left unaffected. This leaves a characteristic step signature in the CSFD. Although it is 
possible to study these features in the cumulative plot form (Michael and Neukum 2010), they 
are clearer to see in the differential or incremental forms.

2.6.4. Uncertainty. The uncertainty of crater population-derived age measurements is 
an important issue. Quoted ages result from a cratering chronology model, which is built 
upon several assumptions and inferences, each of which contributes a degree of uncertainty 
to the overall measurement. Within the model, the chronology function attempts to relate the 
radiometrically determined ages of melt components within returned lunar surface samples 
to accumulated crater spatial densities on the surfaces from which they are inferred to have 
originated. Naturally, there is uncertainty in the radiometric dating procedure itself, which is 
quantifiable, and likewise, there are errors on the measured crater density values. Efforts have 
been made in recent times to improve some of these measurements (Fernandes et al. 2013; 
Robbins 2014; Iqbal et al. 2019a,b, 2020a,b)

Most significant for the cratering chronology model is the uncertainty of the inference 
connecting the last heating event of a dated sample component to the surface thought to originate 
from that event. The inferences are difficult and, in some cases, potentially complicated by 
the fact that lunar material can be recycled through impacts many times without heating, 
the majority of material ejected during an impact event being cold. If some of the inferred 
connections are erroneous—and, at present, there are only 16 of them in total—the shape of 
the chronology function would be in error in a manner which is not meaningfully quantifiable. 
In the future, it is reasonable to expect that a broader suite of samples from sites selected 
specifically for refining the chronology will not only fill in less well-defined time periods 
(e.g., van der Bogert and Hiesinger 2020), but also bring about a general change of shape of 
the calibration function. These inferences thus introduce an uncertainty to age measurements, 
which is both unquantifiable and possibly large compared to other sources of error.

A necessary technique in crater-based dating is to select a portion of the crater distribution 
which is judged to correspond to the PF. The shape of the distribution is used to assess which 
part of the population is undisturbed in its accumulation. Given that there is stochastic variation 
in the population, this procedure itself is subject to error, which increases when fewer craters 
are present.

Figure 5. a) Chronology function in cumulative form (Neukum 1983) with lunar epoch system (Wilhelms 
et al. 1987). b) Same function in rate form.
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Finally, having chosen the crater size range to be analyzed, there is the uncertainty arising 
from the stochastic nature of the cratering process. This component can be estimated using 
Poisson statistics.

The combination of quantifiable and unquantifiable components of uncertainty carries 
through to any ages derived from it. The calculable component can be expressed as  errors 
on the given age, but the unquantifiable component cannot. It has become conventional to 
emphasize that crater chronology model-derived ages are model ages, or absolute model ages 
(AMAs), or to denote the unknown error in the calibration function with the symbol µ. A crater 
model age can be considered a ‘best effort’ translation of a crater population density into a value 
representing time. Inasmuch as we understand that a more densely cratered surface is older 
than one less so, the quoted  errors on model ages retain the same relative certainty, the model 
age placing the density values on a timeline as close to the truth as may currently be achieved.

In the past, the level of uncertainty of the crater retention age of a given count was given 
by the following equation:

±σN = log �N(1) ± √N(1)
A

� 
 

(3)

in which N(1) was the crater retention age calculated for craters ≥ 1 km diameter and A was 
the size of the counted area. The ±σN value gave the upper and lower limits of the error bar of 
the crater retention age, which were used for estimating the uncertainty of the absolute crater 
model age from the cratering chronology. Neukum (1983) and Neukum et al. (2001) generally 
assumed that the cratering chronology is free of errors. Therefore, errors in the AMAs were 
only caused by errors in the determination of crater frequencies (Neukum 1983). Neukum 
et al. (1975a) estimated the systematic uncertainty of the standard distribution curve or the 
measurement to be < 10% for 0.8 km ≤ D ≤ 3 km and up to 25% for 0.8 km ≤ D ≤ 10 km.

However, this error calculation resulted in relatively small errors that have always drawn 
considerable criticism (e.g., Chapman 2015). Thus, Michael et al. (2016) and Robbins et al. 
(2018) proposed new algorithms for the calculation of errors, which are now commonly used, 
e.g., Poisson fitting (Michael et al. 2016).

2.6.5. Spatial randomness testing. Accurate crater-based dating requires a confidence 
that the population being examined accumulated without alteration from the time of the event 
of interest, and that craters from any previous time can be reliably eliminated from the counts. 
There are many possible geological processes that may frustrate this requirement either by 
eroding craters or covering them. Often, the occurrence of such processes may be revealed by 
studying the spatial distribution of the crater population. Primary crater formation is spatially 
random: the flux of bodies impacting a planet has no (or very little) dependence on surface 
location. Geologic processes, however, are often inhomogeneous in the extent of their effect.

A spatial randomness test may be used to verify that the population under study has a 
spatial configuration consistent with being random (e.g., Michael et al. 2012). A deviation 
from randomness to a certain confidence level is likely an indicator that the population has 
been disturbed, or has been overprinted by secondary craters that can be more clustered than a 
random distribution (e.g., Williams et al. 2018a).

It is useful to test for spatial randomness of craters of different sizes. Because different 
geological processes act at different scales, it is often seen that a population is non-random 
at some scale but not at others. This information can be used to determine which part of a 
population is not useable for dating, but it is often also helpful in understanding the nature of 
the disturbance. Knowing the scale of craters affected reveals the depth of material affected, 
which is a clue to which type of surface features were caused by the event.
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3. RECENT LUNAR AGE DETERMINATIONS

The new global high-resolution imagery (e.g., Lunar Reconnaissance Orbiter Camera 
(LROC) and Kaguya Terrain Camera (TC)), spectral information (e.g., M3), and topography 
data (e.g., LOLA) have significantly improved our capability to date regions of the Moon, from 
global inventories of craters > 20 km, > 5 km, and > 1 km (e.g., Head et al. 2010; Povilaitis 
et al. 2018; Robbins et al. 2018) to small surface-area counts to the limit of resolution of 
LROC-NAC imagery. Complementary remote-sensing datasets such as Diviner and Mini-
RF provide additional means for deriving relative and absolute model ages (e.g., Ghent et 
al. 2014; Mazrouei et al. 2019). The tremendous amount of data provides opportunities to 
constrain the formation times of individual events (e.g., irregular mare patches (IMPs), crater 
formation), correlate units over large distances (e.g., Tycho antipodal melt ponds), and date 
never-before seen areas (e.g., permanently shaded regions (PSR) at the poles). These new data 
and investigations shed new light on old problems, but have also raised new questions.

3.1. Major terranes

3.1.1. Highlands. Based of their catalog of craters > 5 km, Povilaitis et al. (2018) found 
that 57–160 km diameter craters across most of the highlands are at or exceed crater densities of 
10% geometric saturation, but nonetheless fit the lunar PF of Neukum et al. (2001). Combining 
this with the observation that small craters on old surfaces can reach saturation equilibrium at 1% 
geometric saturation (Xiao and Werner 2015), Povilaitis et al. (2018) proposed that saturation 
equilibrium is a size-dependent process, where large craters persist because of their resistance 
to destruction, degradation, and resurfacing. Werner (2014) compared basin-forming events on 
Mars, Mercury, and the Moon and found that the Moon holds the oldest surface record.

In high resolution LRO NAC images, Robinson et al. (2016) discovered an unusual 
group of smooth, flat, pond-like deposits on the lunar farside. They investigated four possible 
formation mechanisms, i.e., basin ejecta, pyroclastic volcanism, effusive volcanism, and 
ballistically emplaced impact melt (Robinson et al. 2016). They concluded that an origin as 
volcanism or basin ejecta is inconsistent with the observed morphology and favored an origin 
related to ballistically-emplaced impact melt, although specific source craters could not be 
identified. Using Diviner data, Bandfield et al. (2017) showed that the rock distributions in 
these regions favor certain slope azimuths, indicating a directional component consistent with 
a Tycho ejecta origin. However, the maximum summed AMA for these deposits is ~26 Ma, 
with individual ponds exhibiting AMAs from 10 to 42 Ma (Robinson et al. 2016), thus being 
much younger than the canonical age of Tycho of 109 Ma (Drozd et al. 1977). These AMAs 
are, however, consistent with those measured on the Tycho melt sheet (Krüger et al. 2016).

3.1.2. Mare basalts. In the past decades, significant progress has been made on the dating 
of mare basalt surfaces (e.g., Hiesinger et al. 2000, 2003, 2006, 2011; Bugiolacchi et al. 2006; 
Bugiolacchi and Guest 2008; Haruyama et al. 2009; Morota et al. 2011a,b; Thaisen et al. 2011; 
Whitten et al. 2011; Cho et al. 2012; Pasckert et al. 2015, 2018; Qian et al. 2018, 2021a,b).

Early CSFD measurements revealed that lunar mare volcanism ceased at about 1.2 Ga 
ago on the lunar nearside (Hiesinger et al. 2000, 2003, 2011; Morota et al. 2011a,b), whereas 
volcanism on the farside ended ~2.5–3.0 Ga ago (Haruyama et al. 2009). In particular, mare 
basalt deposits on the northern lunar farside, i.e., Lacus Luxuriae, Buys-Ballot, Campbell, 
and Kohlschutter, range in age from 2.7 to 3.7 Ga (Morota et al. 2011b), the basalts in Mare 
Moscoviense exhibit AMAs of 2.5–3.5 Ga (Haruyama et al. 2009), and those in Mare Australe 
show ages of 3.0–3.9 Ga (Hiesinger et al. 2000). Mare basalts in the Moscoviense basin were 
also dated by Morota et al. (2009) and Thaisen et al. (2011). There, unit Im (Imbrian low-Fe, 
low-Ti) exhibits an AMA of 3.9 Ga, unit Iltm (Imbrian low-Ti) is 3.5 Ga old, unit Ikm (Imbrian 
mare associated with Komarov crater) was dated as being 3.3–3.5 Ga old, and unit Ihtm 
(Imbrian high-Ti) is 2.6 Ga old (Morota et al. 2009; Thaisen et al. 2011).
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In their comprehensive study of 101 mare basalts on the farside, Pasckert et al. (2018) 
showed that volcanism lasted until ~2.2 Ga. Their investigation indicated a major peak in 
volcanic activity between 3.2 Ga and 3.6 Ga, which is a similar time range as the major 
volcanic activity on the nearside, and the rest of the farside (Hiesinger et al. 2000, 2003, 2011; 
Haruyama et al. 2009; Morota et al. 2009; Whitten et al. 2011; Paskert et al. 2015) (Fig. 11). 
Even younger mare basalts were identified in Roseland crater, ranging from 1.5 to 2.9 Ga 
(Pasckert et al. 2015). Sruthi and Senthil Kumar (2014) also reported very young AMAs of 
~1.6 Ga for basalts in Antoniadi crater and, thus, from the interior of the South Pole–Aitken 
basin (SPA). However, Pasckert et al. (2018) found a somewhat older model age of 2.2 Ga 
for the basaltic deposits in Antoniadi. These ages are drastically younger than previously 
derived ages of mare basalts within SPA, which are ~2.5–3.9 Ga old (Haruyama et al. 2009). 

Figure 6. CSFD ages of lunar mare basalts (a) and light plains (b). See text for references.



The Lunar Cratering Chronology 421

Whitten et al. (2011) showed that the range of ages of basalts in the western limb Orientale 
impact basin interior (1.66–3.7 Ga) was similar to the range seen on the lunar nearside, but that 
the abundances were considerably smaller.

Hiesinger et al. (2000) concluded that eruptions of basalts, lasting for hundreds of million 
years within an individual basin are most likely unrelated to the impact heat of the basin-forming 
event. Support for this conclusion comes from thermophysical modeling that suggests that 
thermal and heat flux anomalies associated with a basin will fade within ~100 Ma (Rolf et al. 
2017). Additional support comes from the analysis of post-Orientale basin mare basalt deposits, 
which range over more than 2 Ga (3.7–1.66 Ga), and began about 60–100 Ma later than the 
formation of the basin itself (Whitten et al. 2011). In contrast to the lunar farside and western limb, 

Figure 6 (cont’d). CSFD ages of wrinkle ridges (c) and lunar scarps (d). See text for references.
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on the nearside, the youngest basalts occur in the Procellarum KREEP Terrane (PKT), which is 
characterized by elevated Th abundances. The radioactive decay is interpreted to have kept the 
Moon warmer for longer, allowing for continued eruption of basalts in this region (e.g., Wieczorek 
and Phillips 2000; Laneuville et al. 2013), whereas volcanism ceased earlier in “colder” regions. 
Unit P60 of Hiesinger et al. (2003) is located in this area and was found to be the youngest mare 
deposit dated, i.e., about 1.2 Ga old. More recently, Stadermann et al. (2018) reinvestigated the 
age of this unit with independent CSFD measurements and confirmed this young age. On the 
basis of their CSFDs, they proposed volcanic flooding from east to west over 1.5 Ga.

Cho et al. (2012) performed CSFD measurements and derived very young basalt model 
ages of ~2.9 Ga for the eastern parts of Mare Orientale and even younger AMAs of ~1.8–2.2 Ga 
for basalts in Lacus Veris, Lacus Autumni, and mare patches along the northeastern basin 
rings. Previous studies yielded ages of ~3.45–3.58 Ga for the emplacement of Mare Orientale 
basalts (Wilhelms et al. 1987; Greeley et al. 1993; Kadel et al. 1993; Whitten et al. 2011), 
thus being significantly older than the ages of Cho et al. (2012). For Lacus Veris, Kadel et al. 
(1993) reported AMAs of ~2.29 Ga, and Greeley et al. (1993) found AMAs of ~2.85 Ga of 
basalts in Lacus Autumni. An even younger age of ~1.65 Ga for Lacus Autumni basalts was 
published by Whitten et al. (2011). Interestingly, the young mare basalt ages of Cho et al. 
(2012), particularly near the basin rim (Lacus Autumni, Lacus Veris) coincide with the peak of 
volcanic activity elsewhere on the Moon (Hiesinger et al. 2011; Pasckert et al. 2018).

A global study of 261 mare units revealed that younger basalts in Oceanus Procellarum 
appear to be more titanium rich, and this was interpreted as evidence for a changing magma 
source at about 2.3 Ga ago (Kato et al. 2017). Interestingly, the ages of the higher TiO2 basalts 
correlate with the secondary peak of volcanic activity at ~2 Ga, identified by Hiesinger et 
al. (2003, 2011) and Morota et al. (2011a). Rajmon and Spudis (2004) argued that in Mare 
Tranquillitatis and Mare Fecunditatis, volcanic activity began with low-titanium eruptions 
that evolved into medium- and high-titanium basalts, similar to the observations of Staid 

Figure 7. Histograms of (a) AMAs of all investigated mare basalts on the lunar farside, including model 
ages of Haruyama et al. (2009), Morota et al. (2009, 2011a,b), Pasckert et al. (2015, 2018), and (b) nearside 
mare basalt ages of Hiesinger et al. (2011).
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et al. (1996) for Mare Tranquillitatis basalts. Kodama and Yamaguchi (2003) also found 
such an evolution from low to high titanium basalts, although they noted a decrease in TiO2 
abundances from high to low titanium in young basalts in northeastern Mare Tranquillitatis 
and Mare Fecunditatis. Rajmon and Spudis (2004) also reported that some high-TiO2 basalts 
in Mare Tranquillitatis erupted contemporaneously with low- and medium-TiO2 basalts. 
For Mare Fecunditatis, Rajmon and Spudis (2004) found decreasing basalt eruption volumes 
with increasing titanium abundance. Bugiolacchi et al. (2006) investigated the stratigraphy 
of basalt flows in Mare Nubium and Mare Cognitum and identified three major phases 
of eruptions, each lasting for about 300 Ma. The oldest exposed flows are Late Imbrian 
(~3.4 ± 0.1 Ga) low titanium (2-3 wt%) basalts, followed by early Eratosthenian (~3.2 ± 0.1 
Ga) more titanium-rich (3–4 wt%) basalts and even more titanium-rich basalts (4–5 wt%) that 
erupted until the Late Eratosthenian Period (~2.7 ± 0.4 Ga). Similarly, Bugiolacchi and Guest 
(2008) argued for a correlation between AMAs and TiO2 abundances of mare basalts in Mare 
Imbrium. According to their work, eastern flows are characterized by lower TiO2 contents 
and were erupted between 3.0 and 3.5 Ga ago, whereas Eratosthenian, western basalts show 
higher titanium and iron contents. Although it seems that AMAs are correlated with TiO2 
abundances in the data of Bugiolacchi et al. (2006), a comprehensive global study did not 
show such a correlation (Sato et al. 2017), thus being consistent with Hiesinger et al. (2001). 
Specifically, Sato et al. (2017) found a large variability of TiO2 abundances (0–10 wt%) for 
early basalts (> 2.6 Ga) whereas younger basalts only show medium to high TiO2 abundances 
(average = 6.8 wt%, minimum = 4.5 wt%). Further support for this conclusion comes from 
work by Hackwill (2010), who studied 14 basalt units in Mare Serenitatis and concluded that 
there is no trend in the iron and titanium abundances of the studied basalts with time although 
the variability in FeO and TiO2 abundances of younger basalt flows is much larger.

CSFD measurements for five mare basalt units in Sinus Iridum revealed AMAs of 2.50 to 
3.32 Ga (Qiao et al. 2014). Those ages were found to be consistent with AMAs of Hiesinger et 
al. (2000) to within less than 500 Ma. Morota et al. (2011a) and Zhao et al. (2013) also reported 
similar ages, whereas the AMAs of Bugiolacchi and Guest (2008) are mostly significantly 
younger than the AMAs of the other authors (i.e., Hiesinger et al. 2000; Morota et al. 2011a,b; 
Zhao et al. 2013; Qiao et al. 2014). Zhao et al. (2013) reported AMAs of 2.60–3.33 Ga for 
the Iridum basalts, whereas Bugiolacchi and Guest (2008) found ages ranging from 2.22 to 
3.31 Ga. Fa et al. (2014) reported that there are significant variations in regolith thickness 
and that regolith thicknesses correlate well with AMAs of the basalts, i.e., older units exhibit 
thicker regolith layers. They also determined that the regolith growth rate is larger for younger 
surfaces compared to older surfaces.

In 2020, the Chang’E 5 mission landed NE of Mons Rümker and returned samples that 
provide a new data point for the lunar chronology. To properly understand the provenance 
of the samples several studies have been carried out (e.g., Zhao et al. 2017; Qian et al. 2018, 
2021a,b, Wu et al. 2018). Results of Qian et al. (2021b) indicate that the basalts in the vicinity 
of the landing site vary in age between 1.43 and 1.71 Ga. The landing site itself was dated to be 
1.53 Ga old, thus, being somewhat older than the age of 1.33 Ga determined by Hiesinger et al. 
(2003, 2011). Qian et al. (2018) found an AMA of 1.21 Ga and Wu et al. (2018) determined an 
AMA of 1.49 Ga. Slightly older AMAs were published by Morota et al. (2011a; 1.91/2.20 Ga) 
and Jia et al. (2020; 2.07 Ga). All these AMAs and the corresponding N(1) fall into a range in 
which the lunar chronology is poorly constrained. Thus, the new Chang’E 5 samples offer the 
unique opportunity to test the chronology.

Srivastava et al. (2013) investigated a viscous flow in Lowell crater in the Orientale 
basin, which they interpreted as being volcanic in origin. The flow has a gabbroic/basaltic 
composition and consists of at least three subunits with variable viscosity. The youngest flow 
lobe shows only three superposed impact craters which give an inferred age of about 2–10 Ma 
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(Srivastava et al. 2013). This young age challenges our understanding of volcanic eruptions and 
the thermal history of the Moon, and, thus, the volcanic origin of the flow has been challenged 
by Plescia and Spudis (2014), who favor an impact melt origin on the basis of the morphology 
and the geologic context of the flows.

Hurwitz et al. (2013) found that the age of sinuous rilles is highly correlated with the 
ages of the surrounding mare units. About 80% of the sinuous rilles were incised into mare 
units that were emplaced between 3 and 3.75 Ga ago and only 8% were incised into materials 
younger than 2 Ga. Seven sinuous rilles in the southwestern Aristarchus region were dated by 
Li et al. (2016). The oldest rille was dated as 3.77 Ga; the youngest rille is only 1.49 Ga old. 
The remaining rilles exhibit AMAs of 1.65, 3.61, 3.62, 3.69, and 3.73 Ga.

3.1.3. Light plains. Globally distributed, light plains cover ~5% of the lunar surface 
(Wilhelms and McCauley 1971). Light plains are characterized by mare-like attributes, such as 
their smoothness, lower crater spatial densities compared to surrounding highlands, and their 
appearance as crater fill. However, they also show highland-like characteristics such as their 
geologic and stratigraphic setting and their characteristic high albedos (in comparison to mare 
basalts). Consequently, their origin has been debated for decades (Wilhelms 1965; Eggleton 
and Schaber 1972; Trask and McCauley 1972; Chao et al. 1973; Head 1974; Oberbeck et 
al. 1974; Neukum 1977a,b; Hawke and Head 1978; Schultz and Spudis 1979; Köhler et 
al. 2000; Hiesinger et al. 2013; Meyer et al. 2013, 2016, 2020). Due to their draping and 
mantling appearance and a noticeable thickness of the material, light plains were originally 
interpreted as products of volcanic ash flows (Wilhelms 1965). Alternatively, an origin as 
lava flows has been proposed because light plains often occur as smooth deposits in crater 
interiors and other topographic lows, and embay, bury, and cross-cut older landforms (Trask 
and McCauley 1972). Light plains, i.e., the Cayley Plains were selected as the Apollo 16 
landing site from which ~95 kg of samples were returned (Muehlberger et al. 1972). Of those 
samples, a large number of rocks turned out to be non-volcanic in origin, rather they are light-
colored plagioclase-rich breccias, suggesting an impact origin. Consequently, several impact-
related models were proposed, including (1) ejecta of large basins, particularly Imbrium and 
Orientale (e.g., Eggleton and Schaber 1972; Chao et al. 1973; Meyer et al. 2013, 2020), (2) 
a mixture of material from local and regional craters in addition to basin ejecta (Oberbeck et 
al. 1974; Oberbeck 1975), and (3) in situ formation combined with impact ejecta from large 
events (Head 1974). On the basis of their global mapping, Meyer et al. (2020) proposed that 
about 70% of the light plains are related to the formation of the Orientale and Imbrium basins.

Early CSFD measurements indicated that at least some light plains post-date the Imbrium 
and Orientale impacts, leading Neukum (1977b) and Köhler et al. (2000) to conclude that these 
light plains might be endogenic in origin. Models for a volcanic origin of light plains include: 
(1) unknown form of highland volcanism (e.g., Neukum 1977a), (2) KREEP volcanism (e.g., 
Hawke and Head 1978; Spudis 1978), and (3) cryptomaria (e.g., Schultz and Spudis 1979; 
Hawke and Bell 1981; Antonenko et al. 1995; Whitten and Head 2015a,b).

Hiesinger et al. (2013) dated 16 occurrences of light plains in the southern lunar 
hemisphere, inside and outside the South Pole–Aitken basin. Their CSFD measurements 
revealed AMAs between 3.71 and 4.01 Ga. These model ages are similar to those established 
for light plains north of Mare Frigoris, which vary between 3.65 and 4.0 Ga (Köhler et al. 
2000), light plains within the SPA basin (3.43–3.81 Ga) (Thiessen et al. 2012), and light 
plains in the surroundings of the Orientale and Imbrium basins (3.8-4.3 Ga) (Neukum 1977b). 
Meyer at al. (2016) found AMAs of 3.61–3.83 Ga for light plains NW of the Orientale basin. 
Pöhler et al. (2019) studied 24 light plains in the northern hemisphere and found a range in 
AMAs between 3.43 and 3.98 Ga. Thus, it appears that light plains were formed over a wide 
time range of ~900 Ma from ~3.4–4.3 Ga, which is inconsistent with the hypothesis of a 
global coeval formation of light plains by either the Nectaris, Imbrium, or Orientale basin. 
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In addition, many CSFDs of light plains indicate AMAs younger than the Imbrium and 
Orientale basins and, thus, their origin cannot be related to these basins.

3.2. Basins and craters

3.2.1. Basins. The definition of the lunar chronostratigraphic systems is largely based on the 
laterally extensive ejecta deposits of Nectaris and Imbrium, and the nature and distribution of the 
crater ejecta and ray systems of Eratosthenes and Copernicus (e.g., Wilhelms et al. 1987). AMAs 
were assigned to the chronostratigraphic systems, on the assumptions that specific samples of 
certain Apollo landing sites represent the ejecta of these basins and craters (e.g., Neukum 1983; 
Wilhelms et al. 1987; Neukum and Ivanov 1994). However, the link between lunar sample ages 
and discrete basin forming events is still subject to discussion (e.g., James 1981; Wetherill 1981; 
Deutsch and Stöffler 1987; Wilhelms et al. 1987; Stadermann et al. 1991; Spudis 1993; Neukum 
and Ivanov 1994; Stöffler and Ryder 2001; Stöffler et al. 2006; Orgel et al. 2018).

Hiesinger et al. (2011) provide a compilation of literature ages of specific lunar basins. 
Werner (2014), compiling basin ages from Neukum (1983), Wilhelms et al. (1987), and Fassett 
et al. (2012) proposed that lunar basins formed between 4.35 and 3.65 Ga. Thus, compared to 
Mars and Mercury, which have been resurfaced more extensively, the Moon holds the oldest 
surface record (Werner 2014).

Fassett et al. (2012) measured CSFDs for 30 lunar basins larger than 300 km in diameter. 
Their results generally confirm the widely used stratigraphic sequence of basins of Wilhelms 
et al. (1987), although they found 50% higher crater spatial densities than Wilhelms et al. 
(1987). Compared to the Wilhelms et al. (1987) basin stratigraphy, some of the basins were 
assigned different positions. For example, in the Fassett et al. (2012) stratigraphy, Serenitatis 
is older than Nectaris and Humboldtianum is younger than Crisium. Fassett et al. (2012) 
argued that their data show a transition between two impact crater populations before the mid-
Nectarian period, i.e., before the end of the period of rapid cratering and before the putative 
lunar cataclysm. They also reported that the South Pole–Aitken basin (and many other pre-
Nectarian basins) are in saturation equilibrium (Fassett et al. 2012). However, for the South 
Pole–Aitken (SPA) basin, Hiesinger et al. (2012b), as well as Orgel et al. (2018), demonstrated 
that this is not the case. On the basis of their CSFD measurements, Hiesinger et al. (2012b) 
derived a minimum model age of 4.26 Ga for the SPA basin, assuming that craters larger than 
~100 km are not in equilibrium. Orgel et al. (2018) published a slightly older model age of 
4.31 Ga. On the basis of their study using a buffered non-sparseness correction to reanalyze the 
Fassett et al. (2012) dataset, Orgel et al. (2018) reordered and dated the basins, and concluded 
that there is no evidence for two impact crater populations as suggested by Fassett et al. (2012).

Whitten et al. (2011) derived an AMA for the Orientale ejecta (3.68 Ga) and interior 
melt sheet (3.64 Ga). Cho et al. (2012) reported a CSFD-based AMA for Orientale basin of 
3.79 Ga. However, Cho et al.’s (2012) figure 2 indicates that their CSFD measurements might 
show evidence for resurfacing. Thus, their fitted age might in fact date a younger resurfacing 
event, rather than the basin forming event. Light plains units, inferred to be associated with the 
formation of the Orientale basin show AMAs of 3.61 to 3.83 Ga (Meyer et al. 2016).

A new geologic map of the Crisium basin indicates the exposure of potential impact 
melt remnants of this basin (Spudis and Sliz 2017). Mapping revealed that these fissured, 
cracked deposits are embayed by subsequent mare basalts, show a lower FeO content than 
the Crisium basalts, and have orthopyroxene as their major mafic component. However, 
some of the putative melt remnants appear to be secondary craters, whereas others might be 
megablocks (van der Bogert et al. 2018a). Their rugged morphology, in combination with 
their small areal extent only allowed the determination of poorly constrained AMAs (van der 
Bogert et al. 2018a). The AMA of the largest of these putative impact melts is about 3.94 Ga 
(van der Bogert et al. (2018a). Neukum (1983) reported an AMA of 3.99 Ga using his 1983 
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chronology function, while Orgel at al. (2018) proposed an age of 4.07 Ga on the basis of 
CSFD measurements on the crater rim and ejecta using a buffered non-sparseness correction 
and the chronology function of Neukum et al. (2001). Updated radiometric ages of Luna 20 
samples originally analyzed by Swindle et al. (1991), give ages of 3.88 and 4.10 Ga, the same 
range as the CSFD-derived ages (van der Bogert et al. 2018a).

3.2.2. Copernicus crater. The Apollo 12 landing site is affected by the deposition of distal 
ejecta material, most plausibly from Copernicus crater (93 km in diameter) (e.g., Wood et al. 
1970; Goles et al. 1971; Hubbard et al. 1971; Schnetzler and Philpotts 1971; Schonfeld and 
Meyer 1972; Wänke et al. 1972; Huang et al. 2017). On the basis of NAC images, Hiesinger 
et al. (2012a) found that Copernicus shows an AMA of ~797 Ma and a WAC-derived AMA 
of 779 Ma. Determining exposure ages of samples 12032 and 12033 collected at Head crater 
revealed an age of 800–850 Ma (Silver 1971; Eberhardt et al. 1973; Alexander et al. 1976). 
Support for an age of 800 ± 15 Ma comes from radiometric ages of these samples, including 
degassing ages of felsite clasts within the ropy glasses (Bogard et al. 1992, 1994; Wentworth 
et al. 1994). Recent analyses of 21 Apollo 12 regolith samples, including additional analyses 
of samples 12032 and 12033, yielded degassing ages of 700–800 Ma, which give an estimated 
782 ± 21 Ma age for the Copernicus impact event (Barra et al. 2006).

3.2.3. Tycho crater. On the basis of their CSFD measurements on WAC images, Hiesinger 
et al. (2012a) proposed that 85-km diameter Tycho crater is ~124 Ma old, whereas their CSFD 
measurements on NAC images indicate a somewhat younger AMA of ~85 Ma, similar to the 
AMA derived for the landslide at the Apollo 17 landing site, interpreted as being triggered by 
Tycho secondaries (Wolfe et al. 1975; Lucchitta 1977). Given that the AMAs of the landslide 
(~85 Ma; Hiesinger et al. 2012a) and the Lee–Lincoln scarp (75–105 Ma; van der Bogert et al. 
2012) are very similar, an alternative interpretation of the landslide formation was proposed 
by van der Bogert et al. (2012) and Schmitt et al. (2017), who argued that the landslide was 
triggered by the formation of the Lee–Lincoln scarp. Krüger et al. (2016) geologically mapped 
Tycho crater and derived 17 AMAs for several geologic units, ranging from ~14–82 Ma. They 
found that the summed CSFDs for the floor of Tycho exhibit an AMA of ~26 Ma. The summed 
AMA of the ejecta deposit CSFD measurements is ~74 Ma, and the AMAs for the melt pools 
are 39–47 Ma. This behavior is consistent with target property effects causing a discrepancy 
between impact melt and ejecta ages (van der Bogert et al. 2010, 2017). From sample exposure 
ages, Drozd et al. (1977) concluded that Tycho is 109 ± 4 Ma old. This age is identical to that of 
Guinness and Arvidson (1977) and is similar to an exposure age of 96 ± 5 Ma for the landslide 
and Central Cluster materials derived by Arvidson et al. (1976).

3.2.5. North Ray crater. Two independent CSFD measurements for 1-km diameter North 
Ray crater revealed AMAs of 46 and 47 Ma, respectively (Hiesinger et al. 2012a), thus being 
in excellent agreement with exposure ages of Behrmann et al. (1973; 50.6 Ma), Husain and 
Schaeffer (1973; 30–50 Ma), Marti et al. (1973; 49 Ma), and Drozd et al. (1974; 50.3 Ma).

3.2.6. Cone crater. The fourth calibration point for the lunar chronology at young ages, 
i.e., Cone crater (330 m diameter), was investigated by Plescia and Robinson (2011), Robbins 
(2014), and Hiesinger et al. (2015). Like Plescia and Robinson (2011), Hiesinger et al. (2015) 
found a significant range in AMAs for the Cone ejecta deposit, ranging from 16–82 Ma. 
Although this seems to be a worrisome result, exposure ages also show a wide range of 
12–95 Ma (Bhandari et al. 1972; Bogard and Nyquist 1972; Burnett et al. 1972; Crozaz et 
al. 1972; Husain et al. 1972; Lugmair and Marti 1972; York et al. 1972; Stettler et al. 1973; 
Eugster et al. 1984; Stadermann et al. 1991). The sum of all count areas of Hiesinger et al. 
(2015) indicates an AMA of 39 Ma; somewhat older than the 25–26 Ma of Moore et al. (1980). 
The newer CSFD measurements agree in the determination of older AMAs, with the CSFDs of 
Robbins (2014) and Hiesinger et al. (2015) being basically identical.
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3.2.7. Autolycus and Aristillus craters. Rays from Autolycus (39 km in diameter) and 
Aristillus (55 km in diameter) presumably transported material to the Apollo 15 landing site 
(e.g., Swann 1986; Wilhelms et al. 1987; Bogard et al. 1990; Ryder et al. 1991), although Russ 
et al. (1972) did not find evidence of ray material in neutron fluence data. Provided Autolycus 
and Aristillus materials can be identified and radiometrically dated, this would offer the 
possibility to add a new calibration point to the lunar chronology when combined with CSFD 
measurements of these craters (Hiesinger et al. 2016a). Bogard et al. (1990) and Ryder et al. 
(1991) proposed that the 39Ar–40Ar age of 2.1 Ga derived from three petrologically distinct, 
shocked Apollo 15 KREEP basalt samples (15434,25, 15434,29, 15358), date Autolycus 
crater. Aristillus crater is younger than Autolycus crater and a heating event of sample 15405 
at 1.29 Ga was interpreted as the age of Aristillus crater (Bernatowicz et al. 1978). This 
relatively old age is consistent with findings of Hawke et al. (2004) that indicate that the 
rays of Autolycus and Aristillus are compositional rays and not maturity rays. Aristillus has 
severely modified Autolycus and its ejecta deposits and on the basis of crater spatial densities, 
Guinness and Arvidson (1977) argued that Aristillus might even be younger than Copernicus 
crater. Hiesinger et al. (2016a) dated six regions on the ejecta deposit and the interior of 
Autolycus crater. The CSFD measurements revealed a wide range of ages between ~0.6 to 
~3.80 Ga, which are inconsistent with stratigraphic observations, the AMAs of surrounding 
basalts, and the sample ages. The CSFDs of Hiesinger et al. (2016a) either imply that the dated 
samples are not related to Autolycus or that the CSFD measurements are so heavily affected 
by resurfacing and secondary cratering from Aristillus that they do not represent the formation 
age of Autolycus. Thus, Hiesinger et al. (2016a) argued that Autolycus should not be used as 
a calibration point for the lunar chronology function.

The floors of the south polar craters Shackleton (21 km), Faustini (42 km), Haworth 
(51 km), and Shoemaker (12 km) are permanently shaded regions that contain sequestered 
volatiles (e.g., Watson et al. 1961; Nozette et al. 1996; Zuber et al. 2012). Tye et al. (2015) 
dated these craters with CSFD measurements and found that Shackleton crater is ~3.51 Ga 
old, similar to the age of 3.60/3.69 Ga derived by Zuber et al. (2012). According to Tye et al. 
(2015), Haworth formed 4.18 Ga ago, Shoemaker formed 4.15 Ga ago, and Faustini crater 
is 4.10 Ga old. The floors of these craters exhibit ages of 3.46 Ga (Shoemaker), 3.55 Ga 
(Haworth), 3.50 Ga (Faustini), and 2.63 Ga (Shackleton) (Tye et al. 2015).

Ashley et al. (2012) dated King crater (76 km) to be ~1 Ga old. However, the large Al-Tusi 
impact melt deposit NW of King crater shows a model age of only 385 Ma. A similar behavior 
was seen for other lunar craters, i.e., Tycho, Copernicus, Aristarchus, and Jackson craters. 
CSFD measurements of the Al-Tusi melt deposit NW of King crater as well as Tycho crater 
revealed characteristic kinks in the cumulative CSFD of craters. At King crater, the CSFD 
of the smaller craters rolls over to meet the CSFD for the ejecta deposit at larger diameters, 
once the transition from strength to gravity scaling is apparently completed at diameters of 
170–400 m (van der Bogert et al. 2017). Thus, van der Bogert et al. (2017) concluded that the 
differences in King crater CSFDs most likely result from differences in target properties rather 
than field and/or self-secondary cratering.

Li et al. (2018) dated two proximal ejecta deposits, four smooth ponds, and one hummocky 
area of Lalande crater (24 km). The summed AMAs for the ejecta deposits reveal an AMA 
of 94 Ma, which was interpreted as the formation age of Lalande crater (Li et al. 2018). The 
summed melt pool AMAs are significantly younger at about 38 Ma, whereas the hummocky 
terrain shows an AMA of 44 Ma. This behavior is also consistent with target property effects 
causing a discrepancy between impact melt and ejecta ages (van der Bogert et al. 2017).

Giordano Bruno is a very young 22 km large impact crater that might have formed 
during historic times (Hartung 1976). Shkuratov et al. (2012) proposed that Giordano Bruno 
is probably the youngest crater of its size on the Moon and published an age of ~1 Ma. 
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In addition, it is of particular interest because a ray of this crater affects the Luna 24 landing 
site (Basilevsky and Head 2012). On the basis of its morphologic prominence, Basilevsky 
and Head (2012) estimated the age of Giordano Bruno to be “somewhere between 5 and 
10 m.y.” This age is consistent with a CSFD age of 1–10 Ma (Morota et al. 2009) and the 
14.5 ± 1.5 Ma exposure age of cataclastic anorthosite 2460.3–0.05.1, collected at the Luna 24 
landing site (Fugzan et al. 1986). Plescia et al. (2010) found a large fraction of small craters 
superposed on the ejecta of Giordano Bruno to lack ejecta deposits and concluded that they 
are self-secondaries from the Giordano Bruno impact. They also proposed that if these craters 
are indeed secondary craters, the age derived by Morota et al. (2009) might be too old and that 
Giordano Bruno might be a historic crater. However, Basilevsky and Head (2012) pointed out 
that even if the superposed craters are largely self-secondary craters, this does not require a 
formation of Giordano Bruno in historic times. On the basis of geochemical data (3He spike, 
Th content) of lunar meteorites, Fritz (2012) proposed a possible ejection of the meteorites 
Yamato 82192/82193/86032 by Giordano Bruno about 8.2 Ma ago.

Bell et al. (2012) used Mini-RF data to determine absolute ages of small (< 3 km) 
craters, which are difficult to date with CSFD measurements because of their small sizes. 
The investigated craters show radar-bright haloes, which fade with time. On the basis of radar 
brightness, i.e., the lifetime of the halo, Bell et al. (2012) determined ages of 0.45 to 39 Ma for 
a total of 8 craters. Individual ages are: 0.45, 4.3, 5.0, 5.0, 7.1, 12.5, 37.0, and 39.0 Ma. For 
South Ray crater, Bell et al. (2012) reported a radar-brightness age of 1.94 Ma, which compares 
favorably with the exposure age of 2.01 Ma derived from Apollo 16 samples (Eugster 1999).

Using Diviner thermal radiometer data, Ghent et al. (2014) calculated the rock abundance 
of nine craters that were previously dated with CSFD measurements (Morota et al. 2009; van 
der Bogert et al. 2010; Ashley et al. 2012; Hiesinger et al. 2012a) and found a strong correlation 
between these two parameters (R2 = 0.96). For North and South Ray, the ages derived by this 
method compare favorably with exposure ages. In particular, exposure ages indicate an age of 
50 Ma for North Ray crater and 2 Ma for South Ray crater (e.g., Arvidson et al. 1975), which 
are very similar to the ages derived from rock abundance data of 46–80 Ma for North Ray and 
7–18 Ma for South Ray crater, respectively (Ghent et al. 2014). Thus, the method of Ghent et al. 
(2014) might be a new approach in determining surface ages and might be particularly interesting 
for dating small lunar features that can not be dated with traditional CSFD measurements 
(Ghent et al. 2014). Cold spot craters are also estimated to represent the population of craters 
≲ 1 Ma. CSFD measurements on the largest cold spot craters (D = 0.8 – 2.3 km), give AMA’s 
200 ka–1.3 Ma—many of these craters likely represent lunar meteorite source craters based on 
most meteorite launch ages being < 1.4 Ma. (Williams et al. 2018a,b)

3.3. Volcanic features

In the past decades, several detailed studies on the geologic setting, the composition, 
morphometry, morphology, and the eruption style of lunar mare and highland domes have been 
performed (Wagner et al. 1996, 2002; Weitz and Head 1998, 1999; Jolliff et al. 2011; Kiefer 
2013; Lawrence et al. 2013; Lena et al. 2013; Hiesinger et al. 2016b; Ivanov et al. 2016a).

3.3.1. Mare domes. Lunar mare domes are generally broad, convex, semi-circular 
landforms with relatively low topographic relief (e.g., Head and Gifford 1980; Hiesinger et al. 
2006b). The Marius Hills consist of more than 100–250 domes and cones (Whitford-Stark and 
Head 1977; Weitz and Head 1998; Kiefer 2013) and 43 of them have been dated with CSFD 
measurements by Hiesinger et al. (2016b). The CSFDs of Hiesinger et al. (2016b) exhibit a 
wide range of AMAs of 1.03 to 3.65 Ga and there is no clear spatial correlation of ages with 
location of the dated domes/cones, although younger domes appear to occur preferentially 
in the West whereas older domes are located in the East. Hiesinger et al. (2016b) also 
performed CSFD measurements for basalts located immediately adjacent to the dated domes. 
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The 27 dated basalts are 1.20–3.69 Ga old, thus exhibit a similar range than the domes. 
However, only three of the dated basalts are younger than 3 Ga, whereas most basalts exhibit 
AMAs of 3–3.5 Ga. Like for the domes, Hiesinger et al. (2016b) did not observe a correlation 
of AMAs with the geographic position of the dated basalts. Comparing the model ages of 
the domes with those of the adjacent basalts, Hiesinger et al. (2016b) recognized that most 
domes post-date the neighboring basalts, supporting an interpretation of the domes as late-
stage products of the volcanic activity (e.g., McCauley 1967; Heather et al. 2003) rather than 
the interpretation that the domes are embayed by the basalts (Weitz and Head 1999). Both 
data sets indicate that the volcanic activity in the Marius Hills region lasted much longer and 
is more complex than previously thought (e.g., McCauley 1967; Moore 1967; Whitford-Stark 
and Head 1977; Heather and Dunkin 2002; Heather et al. 2003; Lawrence et al. 2013) although 
possible effects of small count area sizes and topography on the determination of AMAs with 
CSFD measurements must be further explored.

The Mons Rümker region has been visited by the Chinese Chang’E-5 landing mission 
(Zhao et al. 2017; Qian et al. 2018, 2021a,b; Jia et al. 2020). In the context of characterizing 
the potential landing site, Zhao et al. (2017) determined AMAs of 7 geologic units on Mons 
Rümker, including three plateau-forming units, two shallow domes, and two steep-sided 
domes. On the basis of their study, the AMAs range from 2.91 to 3.71 Ga, with the plateau-
forming units exhibiting AMAs of 3.51, 3.58, and 3.71 Ga, the shallow domes showing 
AMAs of 3.04 and 3.43 Ga, and the steep-sided domes yielding AMAs of 2.91 and 3.04 Ga, 
respectively. Zhao et al. (2017) proposed that the steep-sided domes might be younger than 
the shallow domes, but they were careful enough to emphasize that the AMAs of the steep-
sided domes might be affected by topography, small count area sizes, and secondary craters 
differently than the plateau-forming units and the shallow domes. Qian et al. (2018) dated a 
range of units in the same region and found unit Em4 to be the most extensive (~36,000 km2) 
and youngest (~1.21 Ga) mare unit in the area, recommending that this unit be considered for 
the landing region for the Chang’E-5 sample return mission.

3.3.2. Non-mare domes. Several presumably volcanic features exist on the Moon that 
have albedos, spectral characteristics, and morphologies that are distinct from mare volcanic 
deposits. Examples of such non-mare volcanism are the Gruithuisen domes, the Mairan domes 
and cones, as well as Hansteen Alpha and Helmet. According to CSFD studies by Wagner et al. 
(1996, 2002), the Gruithuisen domes are contemporaneous with the emplacement of the maria 
but postdate the formation of post-Imbrium crater Iridum. Contemporaneity with the maria has 
been interpreted to indicate petrogenetic linkages; one possibility is that mare diapirs stalled at 
the base of the crust and partially remelted the crust which produced more silicic viscous magmas 
(e.g., Malin 1974; Head et al. 1998). Ivanov et al. (2016a) proposed that the spatial association 
of the silicic extrusive Gruithusen domes with highland lava plains might reflect either fractional 
crystallization in basaltic magma reservoirs or remelting of high-silica crustal materials. Provided 
the Gruithusen domes were formed by fractional crystallization then the evolved magmas would 
appear in later stages of volcanic activity whereas if they were formed by remelting, the melts 
would have formed early in the evolution of the magma (Ivanov et al. 2016a). On the basis of 
their CSFD measurements, Ivanov et al. (2016a) found the impact melt of Iridum crater to be 
~3.9 Ga old, Gruithuisen Gamma and Delta to be ~3.8 Ga old, and the plains surrounding the 
domes to be ~2.3–3.6 Ga old. Thus, they argued that this sequence of events is more consistent 
with remelting of crustal material although they realized that this formation mechanism requires 
preexisting granite-like materials and must account for age differences of hundreds of millions of 
years between the domes and the adjacent mare basalts (Ivanov et al. 2016a).

A complex stratigraphic relationship of the Mairan middle dome, a lunar red spot of 
silicic composition, and the surrounding mare basalts was found by Boyce et al. (2017). The 
dome formed in distinct eruptions between 3.35 and 3.75 Ga, consisting of low FeO, high-
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silica eruptions contemporaneous with basaltic eruptions that formed the mare basalts (Boyce 
et al. 2017). The simultaneous eruption of mare basalts and the Mairan middle dome is rather 
complex and supports the underplating model for the production of magma that created the 
red spots (Boyce et al. 2017).

The Compton–Belkovich Volcanic Complex (CBVC) in the northeastern lunar hemisphere 
exhibits an unusual abundance of Th, which coincides with a broad topographic rise with several 
superposed domes and cones, high albedo, and a high silica content (e.g., Jolliff et al. 2011; 
Chauhan et al. 2015; Shirley et al. 2016). Using CSFD measurements, Shirley et al. (2016) 
proposed that the onset of the volcanism that formed the Compton–Belkovich Volcanic Complex 
(CBVC) could have occurred as far back as ~3.8 Ga ago. Crater Compton formed about 3.6 Ga 
ago, followed by a resurfacing event ~3.5 Ga ago and the formation of Hayn crater at about 1 Ga 
ago. Thus, the CBVC age was bracketed at ~3.5 Ga. For their age determinations, Shirley et al. 
(2016) used craters larger than ~300 m because smaller craters appear to be in equilibrium.

3.3.3. Pyroclastics. Regional pyroclastic (dark mantle) deposits are extensive (> 1000 km) 
and are often located on the highlands adjacent to younger mare (e.g., Hawke et al. 1979, 1989; 
Head and Wilson 1980; Gaddis et al. 1985, 2000, 2003; Coombs et al. 1990; Greeley et al. 1993; 
Weitz et al. 1998; Weitz and Head 1999; Head et al. 2002; Gustafson et al. 2012). In contrast, 
localized pyroclastic deposits are smaller in extent and are more widely dispersed across the 
lunar surface (Head 1976; Hawke et al. 1989; Coombs et al. 1990). Pyroclastic deposits are 
notoriously difficult to date with CSFD measurements because their mantling nature, their 
subdued crater rims, and their low albedo make it challenging to recognize and measure craters 
accurately (e.g., van der Bogert et al. 2016). Thus, they are often dated indirectly by deriving 
AMAs of adjacent geologic units. Lucchitta and Sanchez (1975) investigated dark mantle 
deposits west of Taurus Littrow and found a paucity of craters < 500 m, which they explained by 
an abnormally high rate of degradation due to the thick, unconsolidated nature of the pyroclastic 
deposits. Ivanov et al. (2016b) found that pyroclastic deposits in Oppenheimer crater date back 
to the Nectarian–Lower Imbrian epochs, showing AMAs between 3.66 and 3.98 Ga.

3.3.4. Irregular mare patches. Ina is an enigmatic D-shaped structure that has been 
known since Apollo 15 high-resolution panoramic camera images became available (e.g., 
Whitaker 1972; El-Baz 1973; Strain and El-Baz 1980; Schultz et al. 2006; Garry et al. 2012). 
On the basis of LROC images, Braden et al. (2014) discovered 70 similar features in mare 
areas on the lunar nearside. Their mare locations, along with their lobate morphology, were 
used to infer a volcanic origin, hence, they were termed irregular mare patches (IMPs). IMPs 
have been interpreted as squeezed-up residual lava extruded during magma withdrawal and 
fragmentation of a solid lava lake surface (Strain and El-Baz 1980; Braden et al. 2014; Head et 
al. 2016; Stopar et al. 2017), outgassing (Schultz et al. 2006; Stooke 2012), and ancient atypical 
volcanism (Head et al. 2016). IMPs are relatively small (< 5000 m maximum extent) and only 
three of them, i.e., Ina, Sosigenes, and Cauchy-5 could be dated with CSFD measurements. 
For these IMPs, Braden et al. (2014) derived extremely young ages of ~18 ± 1 Ma (Sosigenes), 
~33 ± 2 Ma (Ina), ~58 ± 4 Ma (Cauchy-5) that challenge our understanding of the thermal 
history of the Moon and our models of the ascent and eruption of lunar magma.

The young ages have been challenged by Qiao et al. (2017a,b), arguing that very specific 
target properties might lead to systematically lower AMAs. In particular, Qiao et al. (2017a,b), 
supported by theoretical studies (Wilson and Head 2017a), proposed that Ina and Sosigenes 
mounds were composed of ancient extruded magmatic foams developed in the waning stages 
of pit crater development, and might have porosities of up to 90%. Taking these extreme target 
properties into account, the Ina and Sosigenes IMPs could be about 3.5 Ga old, thus, being of the 
same age as the surrounding shield and mare basalts. However, the IMPs are characterized by 
an extremely sharp and well-preserved lobate morphology that is difficult to explain if they are 
billions of years old. This characteristic is accounted for in the magmatic foam model (Wilson 
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and Head 2017a,b) by the physical properties of magmatic foams and their behavior during 
impact; impact energy partitioning in the foam results in vertical crushing dominating over 
lateral ejection, accounting both for smaller craters (therefore, producing younger CSFD ages) 
and significantly impeded lateral transport of ejecta (thus helping to maintain sharp contacts).

Elder et al. (2017) analyzed the thermophysical measurements collected by the LRO 
Diviner thermal radiometer, and found that (1) the Ina interior is only slightly rockier than the 
surrounding mature mare regolith, while much less rocky than the ejecta of some ~100 Ma-
old craters; furthermore the relatively rocky areas are mainly concentrated along the edges 
of the interior floor; (2) the surface regolith of the Ina interior is interpreted to be thicker than 
10–15 cm; and (3) the Ina interior has slightly lower thermal inertia than the surrounding mare, 
indicating that the Ina materials are less consolidated or contain fewer small rock fragments 
than typical regolith; in particular, the largest mound within Ina has the lowest thermal inertia 
values. These surface physical properties suggest either that Ina is older than its calculated crater 
retention ages, or that Ina is indeed < 100 Ma old, but its surface accumulates regolith more 
rapidly than blocky ejecta deposits. Elder et al. (2017) proposed that some form of explosive 
activity, either pyroclasts deposition (Carter et al. 2013) or another style of outgassing (Schultz 
et al. 2006) was likely to have been involved in the formation of Ina, though the possibility of 
lava flow inflation (Garry et al. 2012) or regolith drainage into subsurface void space (Qiao et al. 
2017a) could not be precluded; however, the specific formation mechanism and emplacement 
sequences of the various morphologic units within Ina were not detailed by Elder et al. (2017).

Valantinas et al. (2018) reinvestigated CSFDs of the Nubium and Sosigenes IMPs and 
derived AMAs of 46 ± 5 Ma for the Nubium IMP and 22 ± 1 Ma for the Sosigenes IMP, similar 
to the results of Braden et al. (2014). They also performed CSFD measurements for similarly 
sized close-by mare control areas and several wrinkle ridges and found steep SFDs for all 
studied areas that indicate that these surfaces are still in production rather than equilibrium as 
would be expected if the IMPs are indeed several billion years old. In addition, because they 
all show the same slope, Valantinas et al. (2018) concluded that it is unlikely that the Nubium 
and Sosigenes IMPs were affected by a unique endogenic process.

3.4 Tectonic features

3.4.1 Lobate scarps. Lobate scarps are compressional tectonic features, which are the 
surface expression of low angle thrust faults resulting from tidal deformation and interior cooling 
and contraction of the Moon (Hartmann and Davis 1975; Cameron and Ward 1976; Binder 
1982; Watters 2003; Watters et al. 2009, 2010, 2012, 2015; Watters and Johnson 2010; Banks 
et al. 2012). More than 3,200 lobate scarps have been identified globally on the lunar surface 
and based on their generally crisp appearance and the absence of superimposed, large-diameter 
impact craters (> 400 m), lobate scarps are among the youngest landforms on the Moon (< 1 Ga) 
(Schultz 1976; Binder 1986; Watters et al. 2010; van der Bogert et al. 2012, 2018b; Clark et al. 
2014, 2015, 2016, 2017; Senthil Kumar et al. 2016). Using crater degradation measurements on 
craters transected by or superposed on the scarps, Binder and Gunga (1985) derived ages of 21 
lobate scarps, ranging from 60 ± 30 Ma to 680 ± 250 Ma. Similarly, AMAs on the basis of CSFD 
measurements indicate that the ages of 9 lobate scarps range from 60 to < 600 Ma, implying 
geologically recent faulting (Clark et al. 2015). This is consistent with the work of Binder and 
Gunga (1985), Watters et al. (2010), van der Bogert et al. (2012, 2018b), and Clark et al. (2014, 
2015). Investigating crater populations of 34 additional lunar scarps revealed model ages of 
~24–400 Ma with most scarps forming in the last ~140 Ma (Clark et al. 2017). Combining ages 
of more than 60 lobate scarps derived by Binder and Gunga (1985), van der Bogert et al. (2012, 
2018b), Senthil Kumar et al. (2016) and Clark et al. (2017) indicates that faulting has been 
active in the last 700 Ma and that the distribution of lobate scarp ages is spatially random across 
the lunar surface. The majority of derived model ages are relatively closely clustered, implying 
a short formation period, while a few others exhibited multiple episodes of deformation that 
lasted several hundred Ma (e.g., Binder and Gunga 1985; Clark et al. 2016).
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3.4.2. Wrinkle ridges. Wrinkle ridges are linear to sinuous compressional features that 
commonly occur in mare basins but rarely also extend into adjacent highlands (e.g., Strom 1972; 
Bryan 1973; Maxwell et al. 1975; Chicarro and Schultz 1985; Plescia and Golombek 1986; 
Watters and Johnson 2010). Although it is commonly accepted that wrinkle ridges are tectonic 
features, the exact mechanism of formation is still debated, including the depth of faulting and 
whether they reflect thick- or thin-skinned deformation (e.g., Watters 1991; Mangold et al. 
1998; Montési and Zuber 2003a,b; Ono et al. 2009; Watters and Johnson 2010; Byrne et al. 
2015). In addition, the timing of wrinkle ridge formation has been debated. For example, Fagin 
et al. (1978) proposed that wrinkle ridges were formed by a late-stage deformation and that 
ridges in Crisium, Imbrium, Serenitatis, and Tranquillitatis started forming from 3.8–2.5 Ga. 
Work by Ono et al. (2009) indicates that ridges in Serenitatis formed after 2.84 Ga and Watters 
and Johnson (2010) suggested that wrinkle ridges formed as recently as 1.2 Ga ago. Daket 
et al. (2016) studied the timing of tectonic features in the northwestern part of the Imbrium 
basin and found that lobate scarps, wrinkle ridges, and graben are significantly younger than 
the basalts on which they are located. Daket et al. (2016) concluded that Copernican features 
are dominant in their study region and that the formation of such young features cannot be 
explained by basin loading. Instead, they proposed a reactivation of preexisting zones of 
weaknesses that were originally formed during the basin impact event (Daket et al. 2016). 
Applying the buffered crater counts method (Kneissl et al. 2011, 2015), Yue et al. (2017) 
determined wrinkle ridge model ages for several mare areas, including Oceanus Procellarum, 
Imbrium, Serenitatis, Crisium, Frigoris, Nubium, Tranquillitatis, Fecunditatis, and Humorum. 
The results demonstrate that typical lunar wrinkle ridge groups have average ages from the late 
Imbrian to the early Eratosthenian, i.e., from 3.5 to 3.1 Ga (Yue et al. 2017). Comparing their 
wrinkle ridge ages with the ages of the surrounding basalts (Hiesinger et al. 2000, 2003, 2006b, 
2011), Yue et al. (2017) found that the wrinkle ridges formed 0.1–0.7 Ga after the eruption of 
the basalts, thus, being consistent with local stress fields induced by loading of the basin with 
basalt fill. AMAs of wrinkle ridges in Tranquillitatis (2.4 Ga), however, were formed about 
1.4 Ga after the basalt emplacement and as such differ from the trend seen elsewhere. This 
might imply a different stress mechanism having acted in this basin (Yue et al. 2017).

4. IMPLICATIONS FOR LUNAR HISTORY AND EVOLUTION

4.1. Volcanism

CSFD measurements of numerous volcanic units on the Moon indicate a long record 
of volcanic activity. Early volcanic activity is expressed as cryptomaria (e.g., Schultz and 
Spudis 1979, 1983; Hawke and Bell 1981; Bell and Hawke 1984; Head and Wilson 1992; 
Antonenko et al. 1995; Antonenko and Yingst 2002; Whitten and Head 2015a,b), which have 
ages and stratigraphic relationships that imply that volcanism started prior to the emplacement 
of the oldest dated basalts at ~4 Ga (Hiesinger et al. 2011; Head and Wilson 2017), indicating 
that the total duration of active volcanism on the Moon lasted more than ~3 Ga. The lunar 
meteorite Kalahari 009 might represent a very-low-Ti cryptomare basalt (Terada et al. 2007). 
Radiometric U–Pb age dating of phosphate grains associated with basaltic clasts in this 
meteorite revealed that lunar volcanism was already active at least 4.35 Ga ago (Terada et al. 
2007). In addition, lunar meteorites Miller Range 13317 and Kalahari 009 show evidence for 
ancient volcanic activity 4332 ± 2 Ma and 4369 ± 7 Ma ago (Snape et al. 2018).

Young ages of some basalts on the lunar surface are supported by crater degradation 
ages of Boyce (1976) and Boyce and Johnson (1978), crater counts by Schultz and Spudis 
(1983), several lunar meteorites that have ages of ~2.7–3.0 Ga (Fagan et al. 2002; Fernandes 
et al. 2003; Anand et al. 2006; Fernandes and Burgess 2006; Borg et al. 2007; Rankenburg 
et al. 2007), and geophysical models of the thermal history of the Moon (Ziethe et al. 2009). 
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For example, the youngest age group of Boyce (1976) and Boyce and Johnson (1978), represents 
an age of 2.5 ± 0.5 Ga and the Lichtenberg basalt might be as young as 900 Ma (Schultz and 
Spudis 1983). Young ages often occur in areas elevated in heat-producing elements suggesting 
a complex and diverse history of the thermal evolution of the interior of the Moon.

The evolution of the near- and farside volcanism is relatively similar in that major 
volcanic activity occurred between 3.2 Ga and 3.6 Ga and around 2.2 Ga (Hiesinger et al. 
2011; Pasckert et al. 2018). The volcanic activity was more abundant and lasted longer on the 
nearside compared to the farside and this might have multiple reasons. For example, stripping 
of insulating crust (Ziethe et al. 2009) by the large SPA-forming impact event, in combination 
with lower amounts of heat producing elements such as Th, might have contributed to the 
observed asymmetry. In addition, the absence of weaknesses on the farside due to the absence 
of a sufficiently large impact basin (SPA-sized) on the nearside (Schultz and Crawford 2011) 
might have also played a role in the reduced and shorter volcanic activity in the SPA basin 
(Pasckert et al. 2018). Among others, a study by Taguchi et al. (2017) indicated that the 
minimum crustal thicknesses beneath the lunar basins might have been a dominant factor for 
magma eruption. Thus, the hemispherically asymmetric distribution of maria might be related 
to differences in crustal thicknesses as well as differences in produced magma volumes.

The extremely young AMAs of irregular mare patches and their small volumes (Braden et 
al. 2014) are at odds with our understanding of the thermal evolution of the Moon (e.g., Ziethe 
et al. 2009) and our understanding of the ascent and eruption mechanism of magma (e.g., 
Head and Wilson 1992, 2017). To explain the seemingly young AMAs, Qiao et al. (2017a,b) 
proposed specific physical lava properties (i.e., high porosity) that would affect the crater size 
and, thus, the derived AMAs.

Age relationships between high- and low-Ti basalts and their implications for the structure, 
composition, and thermal evolution of the mantle and the source regions of the basalts are 
discussed in detail in Head et al. (2023, this volume).

Studies of domes and surrounding mare basalts indicate complex stratigraphic relationships 
(e.g., Lawrence et al. 2013; Hiesinger et al. 2016b). Remote-sensing results indicate that the 
Marius Hills domes share the same basaltic composition than the surrounding mare basalts 
and are not silicic in nature (e.g., Weitz and Head 1999; Heather et al. 2003; Besse et al. 2011; 
Lawrence et al. 2013). Lawrence et al. (2013) interpreted the morphology, morphometry, 
and mineralogy of the Marius Hills to be consistent with basaltic effusions, and domes being 
formed by rough, blocky lava flows, with typically thinner and shorter flows interpreted to 
indicate relatively lower effusion rates and increased late-stage viscosity. In the Marius Hills 
region, many flows originate at breached cones, which are superposed on domes, implying 
a synchronous formation of cones and lobate flows during the last stages of Marius Hills 
volcanism (Lawrence et al. 2013; Head and Wilson 2017). Together with the non-silicic 
nature of the domes, this was interpreted as evidence against the differentiation hypothesis of 
McCauley (1967), although CSFD measurements of Hiesinger et al. (2016b) seem to indicate 
that dome formation lasted longer than the production of mare basalts. In particular, on the basis 
of their CSFD measurements for 43 low shields, Hiesinger et al. (2016b) determined a wide 
range of AMAs of 1.03 to 3.65 Ga. They also performed CSFD measurements for 27 basalts 
occurring immediately adjacent to the dated low shields. The dated basalts showed AMAs of 
1.20–3.69 Ga, thus a similar range than for the low shields. However, only three of the dated 
basalts are younger than 3 Ga, with the remaining 24 basalt units exhibiting AMAs of 3–3.5 Ga.

Pyroclastic deposits were found to often be older than mare basalts in their vicinity (Head 
1974; Hiesinger et al. 2000) and this might be consistent with an initial pressure release from 
overpressurized dikes (e.g., Head and Wilson 1992, 2017; Wilson and Head 2016, 2018) 
because Wilson and Head (2003a,b) proposed that gas concentrated in a low-pressure micro-
environment at the tip of a dike propagating rapidly from a magma reservoir to the surface.
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In summary, the wide variety of lunar volcanic deposits in eruption style (effusive and 
explosive), composition, AMAs, and physical properties are evidence for a complex evolution 
and history of the Moon. The reader is referred to Head et al. (2023, this volume) for further 
information on lunar volcanism.

4.2. Tectonism

Several studies revealed that small-scale lobate scarps formed within the last few hundred 
million years and that their spatial distribution is most consistent with a compressive stress 
field in response to cooling and shrinking of the Moon as well as tidal deformation. There are 
at least two competing models of the initial thermal conditions of the Moon (e.g., Clark et al. 
2017), both of which make very specific predictions for the timing, duration, and extent of 
lunar scarp formation. These are (1) the initially totally molten Moon (ITM) (e.g., Runcorn 
1977; Runcorn et al. 1977; Binder and Lange 1980) and (2) the lunar magma ocean (LMO) 
(e.g., Solomon and Chaiken 1976; Solomon and Head 1979). The ITM predicts that after 
formation, the Moon was in a hot initial state, either near or above the basalt solidus (Pritchard 
and Stevenson 2000). Thus, the model predicts that lunar thrust faults should be young (< 1 Ga). 
In this model, trust faults were created by horizontal compressional stresses of up to 350 Mpa in 
the outer megaregolith, with radial contraction of up to 5 km and increasing thrust faulting with 
time (Binder 1982; Binder and Gunga 1985). The LMO model predicts that immediately after 
its formation, the Moon had a hot magma ocean with depths between 300–500 km and a cool 
interior at 1700–1800 K (Solomon and Chaiken 1976; Solomon and Head 1979). The model 
predicts that global stresses in the outer crust should today be less than 100 Mpa and insufficient 
to initiate global scale thrust faulting (Solomon and Head 1979; Turcotte and Schubert 2014). 
Thrust faulting in this model is localized, mainly around maria, does not occur in the highlands, 
and is limited to the early lunar geologic history (> 3 Ga) (Solomon and Chaiken 1976). The 
absence of compressional tectonic features might be explained by the fact that more stress is 
required for faults to slip in the highlands versus the maria, as the highly brecciated material in 
the highlands would need to first compact before thrust faulting can occur (Clark et al. 2017). 
Although these predictions can be tested, the results are somewhat ambiguous. For example, 
the identification of lobate scarps in the highlands appears to be inconsistent with the LMO. To 
initiate faulting in the highlands, compressive stresses larger than those produced by the LMO 
model are required and can be achieved with the ITM model. However, Banks et al. (2012) 
determined compressional stresses of ~16 Mpa for the highland scarps. Such stress values are 
too low for the ITM model but are consistent with the LMO model (Clark et al. 2017). Many 
researchers (e.g., Binder and Gunga 1985; Watters et al. 2010, 2015; van der Bogert et al. 2012, 
2018b; Clark et al. 2017), applying various dating techniques, agree that lunar lobate scarps are 
rather young geologic features, probably less than 700 Ma. Watters et al. (2010, 2012) argued 
that the low stress levels derived for the young scarps and their sizes are more consistent with 
thermal models for the early Moon that predict relatively low levels of global compression 
(< 100 Mpa; radius change of ±1 km in the past 3.8 Ga), i.e., the LMO model.

In summary, although we cannot currently distinguish between the two thermal models 
on the basis of the available data, the crisp appearance and the young AMAs of lobate scarps 
are consistent with late-stage horizontal crustal shortening due to tidal stresses and global 
contraction of the Moon by secular cooling (e.g., Watters et al. 2015). Investigating the timing 
of tectonic deformation will ultimately allow us to better understand the thermal evolution 
of the Moon and these studies have been largely overlooked so far. (Nahm et al. 2023, this 
volume) provides a more detailed discussion of lunar tectonism.

4.3. Cataclysm

Almost 50 years after being first proposed by Tera et al. (1973), the existence of a lunar 
cataclysm (i.e., an unusually high impact bombardment) is still debated (e.g., Tera et al. 1973, 
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1974; Baldwin 1974, 1987, 2006; Wasserburg et al. 1974; Hartmann 1975, 2003; Grinspoon 
1989; Neukum and Ivanov 1994; Cohen et al. 2000; Stöffler and Ryder 2001; Chapman et 
al. 2007; Hartmann et al. 2007; Bottke et al. 2012; Morbidelli et al. 2012b; Fernandes et al. 
2013; Geiss and Rossi 2013; Norman and Nemchin 2014; Boehnke and Harrison 2016; Frey 
2016; Michael et al. 2018; Morbidelli et al. 2018). Tera et al. (1973) compared Apollo 16 
Rb–Sr and U–Th–Pb ages to those of Apollo 12, 14, and 15 and found evidence for extensive 
melting and metamorphism at ~3.95 Ga ago, which they interpreted as (1) the Imbrium ejecta 
deposit having affected all the studied rocks or (2) a major peak in impact rate. Baldwin (1974) 
carefully reviewed the arguments for a cataclysm and concluded that the emplacement of the 
Imbrium basin is responsible for the peak in radiometric ages.

Lunar meteorites are likely to be random samples from the lunar surface and thus provide 
new information on the cataclysm. If the spike in ages at 3.9–4.0 Ga is also identified in the 
meteorites, this would support the cataclysm hypothesis whereas the absence of such a spike 
would argue for a sample bias introduced by the collection of Imbrium ejecta material and thus 
negate the existence of the cataclysm. Cohen et al. (2000) reexamined several lunar meteorites 
and although they did not observe a spike, they proposed that the absence of impact melts 
older than 3.92 Ga supports the cataclysm hypothesis. However, this idea has been questioned, 
for example, by Michael et al. (2018) who did not find a spike in ages at 3.9–4.0 Ga ago and 
concluded that studies on lunar meteorites as well as extensive CSFD measurements do not 
support the classical lunar cataclysm, i.e., an unusual high impact rate between 3.9 and 4.0 Ga 
ago (e.g., Michael et al. 2018).

On the basis of numerical models and mass accretion arguments, Bottke et al. (2007) 
and Ryder (2002) argued that the decay of accretional leftovers is inconsistent with the late 
formation times of lunar basins and a steady decline in impact rate. The so-called “Nice-
Model” is an elegant way to explain the putative lunar cataclysm (e.g., Morbidelli et al. 2001, 
2005; Gomes et al. 2005; Tsiganis et al. 2005; Bottke et al. 2007). The Nice models assume a 
migration of the giant planets that would disturb the asteroid belt, resulting in a massive delivery 
of planetesimals to the inner Solar System that could have caused the cataclysm (e.g., Gomes 
et al. 2005). Although the numerical calculations strongly depend on the parameters chosen, 
some Nice models (e.g., Gomes et al. 2005) predict a sharp increase in impact rate caused by a 
Jupiter–Saturn 2:1 mean motion resonance, consistent with the cataclysm hypothesis.

Recently, Morbidelli et al. (2018) revisited their earlier work (Morbidelli et al. 2012a,b) 
that attempted to derive a numerical model that is compatible with both the lunar crater record 
in the 3–4 Ga period and the abundance of highly siderophile elements (HSE) in the lunar 
mantle. The new study indicates that under the traditional assumption that the HSEs record 
the total amount of material accreted by the Moon since its formation, only the cataclysm 
scenario can explain the data. However, Morbidelli et al. (2018) also evaluated a scenario in 
which the HSEs are sequestered from the mantle during magma ocean crystallization, due 
to iron sulfide exsolution (O’Neil 1991; Rubie et al. 2015). Assuming that the lunar magma 
ocean crystallized about 100–150 Ma after Moon formation (Elkins-Tanton et al. 2011), and 
therefore that HSEs accumulated in the lunar mantle only after this timespan, Morbidelli et al. 
(2018) showed that the bombardment in the 3–4 Ga period can be explained in the accretion 
tail scenario. Not only does this scenario not require a cataclysm, it would explain why the 
Moon appears to be depleted in HSEs relative to the Earth (Morbidelli et al. 2018).

Osinski et al. (2023, this volume) and Cohen et al. (2023, this volume) offer further insight 
into impact cratering processes, including the cataclysm.

4.4. Recent impact rate

Several studies suggest periodic impact rate variations caused by cometary showers due to 
perturbation of the Oort cloud by galactic tides, the passage of the Solar System near a molecular 
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cloud, or an unseen star (e.g., Davis et al. 1984; Rampino and Stothers 1984; Napier 1998; 
Gardner et al. 2011). In addition, Rampino and Stothers (1984) and Napier (1998) proposed that 
vertical oscillations of the Sun about the galactic mid-plane with a period of 52–74 Ma would 
cause variations in the impact rate. However, on the basis of an in-depth study of all available 
data, Bailer-Jones (2011) did not identify any periodicity, similar to results of Grieve (1991) 
and Jetsu and Pelt (2000). Bailer-Jones (2011) argued that most studies that claim a periodicity 
in the impact rate suffer from problems in their methodology, including misinterpretations of 
statistical probabilities (p-values), overestimating the significance of periodogram peaks, or 
failing to consider a sufficient set of models. On the basis of the four data points for Copernicus, 
Tycho, North Ray, and Cone craters, Neukum (1983) and Neukum et al. (2001) postulated a 
constant lunar impact rate for the last 3 Ga. Remeasured CSFDs for these craters (Hiesinger 
et al. 2012a, 2015) are generally consistent with a constant impact rate, thus supporting the 
conclusions of Grieve (1991), Jetsu and Pelt (2000), and Bailer-Jones (2011). However, with 
only four data points it is impossible to exclude short-term episodic variations in the cratering 
rate between the four anchor points. However, observation of newly formed impact craters since 
orbit insertion of the Lunar Reconnaissance Orbiter in 2009 (Speyerer et al. 2016) are in general 
agreement with models of the recent impact rate (e.g., Neukum et al. 2001). Although Speyerer 
et al. (2016) found 33% more craters larger than 10 m than predicted by the Neukum et al. 
(2001) production and chronology function, the contemporary crater production rate is within 
the uncertainties of the Neukum et al. (2001) PF. Speyerer et al. (2016) argued that this finding 
is consistent with a uniform cratering rate over recent geologic time. Alternatively, it has been 
argued that the impact flux might have increased at the end of the Paleozoic (e.g., Mazrouei et 
al. 2019). Further information on the impact rate is provided by (Cohen et al. 2023; Osinski et 
al. 2023, both this volume).

4.5. Interior/thermal evolution

Basalt ages as young as 1.2 Ga have been identified in the general area of the Procellarum-
KREEP-Terrane (PKT). New thermal conduction models suggest that a concentration of heat-
producing elements in the lower crust beneath the PKT could result in continued melting of the 
underlying mantle over much of lunar history (Wieczorek and Phillips 2000; Laneuville et al. 
2013). Three-dimensional mantle convection models taking into account the isolating effects 
of the porous megaregolith with a low thermal conductivity demonstrated that the melting 
zone could have lasted up to about 2 Ga ago (Ziethe et al. 2009), thus potentially explaining 
the eruption of the youngest mare basalts. Alternatively, Spohn et al. (2001) proposed that 
extremely high initial mantle temperatures and/or large amounts of heat-producing elements 
could maintain a partially molten zone as the source region for the young mare basalts. While 
thermal models can explain volcanic eruption on the Moon until about 1–2 Ga ago, they fail 
to explain the young volcanism that is interpreted to have produced the irregular mare patches 
a few tens of millions years ago (e.g., Braden et al. 2014). Others have pointed out that at this 
recent point in time, the compressional stress field initiated by secular cooling of the Moon 
and the thickness of the lunar lithosphere were sufficiently large to terminate any volcanic 
eruption onto the lunar surface (e.g., Head and Wilson 1992, 2017; Wilson and Head 2017b). 
For further information, refer to Nahm et al. (2023, this volume).

In conclusion, CSFD measurements and derived AMAs and products provide important 
insight into the geologic and thermal evolution of the Moon. Upcoming lunar missions with in-
situ dating capabilities or sample return will allow us to further test and possibly improve the 
PF and CF. Thus, we will not only better understand our closest neighbor but from application 
of these two functions will also learn much more about the timing of geologic processes on 
other planetary objects.
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