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Glossary
CMB The core–mantle boundary is the surface defined by

the contrast in composition between silicate and oxide

crystalline rocks in the mantle and molten iron alloy in

the core.

D00 Designation for the lowermost 200–300 km of the lower

mantle. This region is distinct from the overlaying mantle in

that the seismic velocity variations are not consistent with

homogeneous material under self-compression and an

adiabatic temperature gradient.

DAC Diamond-anvil cell compression devices in which a

sample is compressed between faceted diamonds, often with

laser heating, to achieve high P–T conditions such as in the

lower mantle and core.
atise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-538
2.05.1 Lower Mantle Mineralogy

The Earth’s uppermost mantle is peridotitic (pyrolytic) in com-

position based on petrologic evidence (McDonough and Sun,

1995). Given that the global seismic velocity discontinuity

observed at 410 km depth can be reconciled with a phase

transition from olivine to wadsleyite, the transition zone

should also be peridotitic in composition, although it could

be contaminated by subducted former oceanic lithosphere

with an ecologitic component (e.g., Irifune et al., 2008;

Nishihara et al., 2005). On the other hand, the chemical com-

position of the lower mantle is a matter of ongoing debate. It is

generally believed that the bulk Earth composition is similar to
solar abundance or the nonvolatile element composition of

primitive meteorites (CI chondrites). If this is the case, the Mg/

Si ratio of the Earth’s mantle should be close to 1.0, while the

peridotitic upper mantle shows Mg/Si¼1.27, with Mg2SiO4

olivine as the most abundant mineral. In order to reconcile

the chondritic Earth model with the peridotitic mantle, Allègre

et al. (1995) proposed 5 wt% Si in the core as its primary light

alloy component. Alternatively, the lower mantle could be

Si-enriched relative to the upper mantle and composed primar-

ily of MgSiO3-rich perovskite.

Recent experimental and geophysical modeling studies have

supported a perovskititic lower mantle. Ricolleau et al. (2009)

argued that the Preliminary Reference Earth Model (PREM)
02-4.00054-3 85
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density profile of the lower mantle is compatible with single-

phase perovskite, on the basis of P–V–T (pressure–volume–

temperature) equation of state (EoS) of MgSiO3-rich perovskite

formed in a natural peridotite bulk composition. However, the

chemical composition of MgSiO3-rich perovskite may have

changed with changing P–T conditions during their measure-

ments because it coexisted with (Mg,Fe)O ferropericlase in the

sample. More recently, Murakami et al. (2012) measured shear-

wave velocities of MgSiO3 perovskite and MgO to 91 GPa and

2700 K and also estimated the effects of Al and Fe impurities for

room-temperature measurements to 124 GPa. Comparing the

velocities of (Fe,Al)-bearing MgSiO3 perovskite and (Mg,Fe)O

ferropericlase to the PREM velocity profile, Murakami et al.

concluded that the lower mantle is composed of more than

93% MgSiO3-rich perovskite, consistent with a chondritic

lower mantle model rather than a peridotitic mantle model.

First-principles studies spanning two decades not only support

a peridotitic uppermost lower mantle but also suggest that

PREM (Dziewonski and Anderson, 1981) velocities deviate

from a peridotitic composition in the deeper lower mantle (da

Silva et al., 2000; Karki et al., 2001; Wentzcovitch et al., 2004,

2009; Zhang et al., 2014). Part of the deviation is likely to be

related with the post-perovskite transition (Wentzcovitch et al.,

2004). Thermodynamic modeling also suggests deviations from

a peridotitic mantle (Xu et al., 2008), while a more recent first-

principles molecular dynamics (MD) gives additional support

to a peridotitic lower mantle (Zhang et al., 2014).

Regardless of this evolving mineral physics perspective, it

is widely believed that the whole mantle is being mixed and

the lower mantle is thus commonly inferred to be similar in

composition to the peridotitic upper mantle. The experiments

by Irifune et al. (2010) using multianvil apparatus with

sintered diamond anvils showed phase assemblage and pro-

portion in a peridotitic lower mantle to 47 GPa and 2073 K

to be 74 vol.% MgSiO3-rich perovskite, 18 vol.% ferroperi-

clase, and 8 vol.% CaSiO3 perovskite. Kesson et al. (1998)

demonstrated through a combination of diamond anvil cell

(DAC) experiments and chemical analysis using transmission

electron microscope (TEM) that a peridotitic deep lower man-

tle should consist of 69 wt% MgSiO3-rich perovskite, 22 wt%

ferropericlase, and 9 vol.% CaSiO3 perovskite. With similar

techniques, Murakami et al. (2005) reported 72 vol.% post-

perovskite, 21 wt% ferropericlase, and 7 wt% CaSiO3 perov-

skite for P–T conditions in the lowermost mantle. Trampert

et al. (2004) found, however, that the proportion of MgSiO3-

rich perovskite is variable by up to �10% in the lower man-

tle. The lower mantle is probably primarily (69–93 wt%)

MgSiO3-rich perovskite, so the stability and property of this

phase have been extensively studied.
2.05.2 Post-Perovskite Phase

2.05.2.1 Discovery

Silicate perovskite was first synthesized at 30 GPa based on

laser-heated DAC technique by Liu (1974). Since then,

MgSiO3-rich perovskite is known to be a primary constituent

in the lower mantle, consisting about 70% of a peridotitic

lower mantle as noted earlier in the text, coexisting with

minor amounts of (Mg,Fe)O ferropericlase and CaSiO3
perovskite (Hirose, 2002; Irifune, 1994; Wood, 2000). While

seismology has shown that the lowermost few hundred kilo-

meters of the mantle, called the D00 layer, has distinct properties
and a widespread seismic velocity discontinuity (Lay and

Helmberger, 1983), it was initially believed that MgSiO3-rich

perovskite is stable down to the core–mantle boundary (CMB).

Indeed, Knittle and Jeanloz (1987) reported the stability of

orthorhombic (Mg,Fe)SiO3 perovskite up to 127 GPa, close

to the D00 conditions. Subsequent experimental and theoretical

studies supported the stability of MgSiO3-rich perovskite into

the deep lower mantle (e.g., Andrault, 2001; Fiquet et al., 2000;

Karki et al., 2000; Kesson et al., 1998; Wentzcovitch et al.,

1993). Some form of solid–solid phase transition with a pos-

itive Clapeyron slope in the lowermost mantle was suggested

from the correlation between temperature-modulated velocity

anomalies and elevation of the observed D00 S-wave velocity

discontinuity, but this was speculative (Sidorin et al., 1999).

Conventionally, the identification of a high-pressure phase

is made after the sample is recovered at ambient conditions. In

the early 1990s, intense synchrotron x-rays became available to

examine crystal structure in situ at high P–T (see a review by

Yagi, 2007). Such in situ experiments are important in particu-

lar for metals because high-pressure forms of metal usually

transform back to low-pressure forms during decompression.

This is sometimes true for silicates as well. Indeed, MgSiO3

post-perovskite cannot be quenched to ambient conditions as

it converts to amorphous structure upon decompression;

therefore, in situ observations were key to its discovery.

Murakami et al. performed x-ray diffraction (XRD) mea-

surements in situ for the lowermost mantle P–T conditions,

based on a combination of laser-heated DAC and synchrotron

radiation at SPring-8. In 2002, they first observed a number of

unknown diffraction peaks in the XRD patterns of natural

peridotite composition at pressures higher than 120 GPa

(Murakami et al., 2005). Subsequently, they analyzed

MgSiO3 and found similar radical changes in the XRD patterns

when MgSiO3 perovskite was heated to 2500 K at 127 GPa

(Figure 1(a) and 1(b)) (Murakami et al., 2004). Importantly,

such conversion was found to be reversible; the pattern chan-

ged back to that of perovskite when the sample was decom-

pressed and reheated at 89 GPa (Figure 1(c)). These

observations indicated a phase transition from MgSiO3 perov-

skite to a new polymorph, now called post-perovskite.

The crystal structure of MgSiO3 post-perovskite was deter-

mined with the aid of computational MD simulations

(Murakami et al., 2004). The details of structure determination

by MD calculations were reported in Hirose and Kawamura

(2007). ‘Perovskite’ has a family of related structures with a

vast range of chemical compositions. Nevertheless, the XRD

peaks observed by Murakami et al. are not accounted for with

any perovskite-type structure. Pressure-induced phase transfor-

mations from perovskite to denser structures were not known

at that time. Tsuchiya et al. (2004b) independently obtained

this structure using first-principles MD simulations with vari-

able cell shape (Wentzcovitch et al., 1993) guided by a ratio-

nale based on pressure-induced structural distortion of

perovskite (Wentzcovitch et al., 1995). The search was moti-

vated by the XRD data of Murakami et al. (2004), which,

together with thermodynamic stability calculations (Tsuchiya

et al., 2005a), confirmed the nature of the identified structure
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Figure 1 XRD patterns of MgSiO3. (a) Perovskite at 105 GPa and 2250 K, (b) post-perovskite at 121 GPa and 300 K after heating at 127 GPa, (c) post-perovskite at 97 GPa and 300 K after decompression
from 125 GPa, and (d) perovskite at 72 GPa and 300 K after heating at 89 GPa (after Murakami et al., 2004). P, perovskite; Pt, platinum; N, new phase (post-perovskite). In (b), the calculated powder XRD
pattern of post-perovskite (space group: Cmcm) and the peak positions of MgO and SiO2 (both a-PbO2-type and CaCl2-type structures) are shown.
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at experimental conditions. The crystal structure of post-

perovskite and the envisioned relationship between the perov-

skite and post-perovskite structures are illustrated in Figure 2.

The coordination numbers of Si and Mg remain six and eight,

respectively, as in perovskite. The Mg2þ site in post-perovskite

is smaller than in perovskite, which results in a volume reduc-

tion of 1.0–1.5% (Iitaka et al., 2004; Tsuchiya et al., 2004b).

Oganov and Ono (2004) also obtained the same structure

from the analogy of similar phase transition in Fe2O3. This

structure is the same as those of UFeS3 (Noel and Padiou,

1976) and CaIrO3 (McDaniel and Schneider, 1972), both of

which are stable at ambient pressure.
2.05.2.2 Stability

Post-perovskite-type phase transitions have now been reported

in a variety of simple and multicomponent systems: MgSiO3

(Hirose et al., 2006a; Murakami et al., 2004; Oganov and Ono,

2004; Ono and Oganov, 2005; Shim et al., 2004; Tsuchiya

et al., 2004a,b), MgGeO3 (Hirose et al., 2005b), MnGeO3

(Tateno et al., 2006), ZnGeO3 (Yusa et al., 2005), CaIrO3

(Hirose and Fujita, 2005; Kojitani et al., 2007), Al2O3 (Akber-

Knutson et al., 2005; Caracas and Cohen, 2005; Oganov and

Ono, 2005; Stackhouse et al., 2005a,b; Tsuchiya et al., 2005b),

Fe2O3 (Ono and Ohishi, 2005; Ono et al., 2004), Mn2O3

(Santillán et al., 2006), NaMgF3 (Martin et al., 2006;

Umemoto et al., 2006a), and natural pyrolite (KLB-1 perido-

tite) (Grocholski et al., 2012; Murakami et al., 2005; Ohta

et al., 2008a; Ono and Oganov, 2005), normal mid-ocean

ridge basalt (MORB) compositions (Grocholski et al., 2012;

Hirose et al., 2005a; Ohta et al., 2008a; Ono et al., 2005),

harzburgite composition (Grocholski et al., 2012), and San

Carlos olivine (Grocholski et al., 2012). CaIrO3 has been

often used as an analog of MgSiO3 post-perovskite to explore
Post-perovskite

c a

b

c¢ a¢

b¢

Perovskite q

Figure 2 Structural relation between perovskite and post-perovskite
under a shear deformation e6 (Tsuchiya et al., 2004a,b). This relationship
corresponds to the distortion associated with a nucleation center of
the post-perovskite transition (Oganov et al., 2005).
the Clapeyron slope of the perovskite/post-perovskite phase

transition boundary (Hirose and Fujita, 2005; Kojitani et al.,

2007), compression behavior (e.g., Martin et al., 2006), defor-

mation mechanism (e.g., Walte et al., 2007, 2009), rheology

(Hunt et al., 2009), grain growth (Yoshino and Yamazaki,

2007), etc., which are difficult to experimentally examine

in situ for the lowermost mantle high P–T conditions.

2.05.2.2.1 Post-perovskite phase boundary in pure MgSiO3

The determination of the thermodynamic post-perovskite

boundary in MgSiO3 post-perovskite is important to shed

light on the nature of the D00 region. This is a challenging task

for both experiments and computations for several reasons.

In situ crystallography based on DAC has been extended to

the multi-Mbar regime, and temperatures in these experiments

have crossed the 6000 K mark. However, high P–T calibration

standards still give uncertainties about the post-perovskite

phase boundary. Computations based on density functional

theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,

1965) suffer from uncertainties related with the choice of the

approximation used to describe the exchange–correlation

energy of electrons and of the approach used to describe

ionic motion: quantum at relatively low temperatures or clas-

sical at relatively high temperatures.

The first report on MgSiO3 post-perovskite by Murakami

et al. (2004) found that it exists above 125 GPa and 2500 K,

but did not tightly constrain the P–T location of the boundary.

Later, Tateno et al. (2009) demonstrated on the basis of exper-

iments to 171 GPa and 4400 K that the phase transition bound-

ary between perovskite and post-perovskite in pure MgSiO3 is

located at 121 GPa corresponding to 2650 km depth at a plau-

sible deep lower mantle temperature of 2400 K (Figure 3).

Recently, the accuracy of the pressure scale used to determine

experimental pressure has been a matter of extensive debate

(e.g., Fei et al., 2004; Hirose, 2007). With synchrotron XRD

measurements, pressure at high temperature is calculated from

the P–V–T EoS of an internal pressure standard loaded together

with a sample. The typical pressure standards include Au, Pt,

MgO, and NaCl. However, it is known that each standard indi-

cates a different pressure, sometimes with differences of more

than 10 GPa at �120 GPa even at room temperature (Akahama

et al., 2002; Hirose et al., 2008a; Matsui et al., 2009). Even using

a given pressure standard, different EoSs show different pres-

sures; for example, the EoS of Au proposed by Fei et al. (2007)

gives pressure higher by about 12 GPa at 110 GPa/2400 K than

that reported by Anderson et al. (1989) (Hirose et al., 2008a).

On the other hand, Fei et al. (2007) proposed internally consis-

tent pressure scales (EoSs) of Au, Pt, NaCl, and Ne primarily

based on the MgO scale reported by Speziale et al. (2001).

Similar efforts to establish consistent pressure scales are also

found in Dorogokupets and Dewaele (2007).

The post-perovskite phase transition boundary in pure

MgSiO3 has been experimentally determined using different

pressure standards of Pt, Au, and MgO (Hirose et al., 2006a;

Ono and Oganov, 2005; Tateno et al., 2009) (Figure 3). These

results reported transition pressures differing by more than

15 GPa, but this inconsistency can be explained by the differ-

ence in pressure scales. Ono and Oganov (2005) demonstrated

that the transition occurred above 130 GPa and 2500 K based

on the Pt scale proposed by Holmes et al. (1989). Such

rtronnes
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relatively high transition pressure is consistent with the earlier

observation that the Pt scale predicts much higher pressure

than the Au scale in this pressure range at 300 K (Akahama

et al., 2002). On the other hand, Hirose et al. (2006a) demon-

strated that the transition boundary is located at much lower

pressure, 113�2 GPa at 2400 K, when using the Au scale

proposed by Tsuchiya (2003). Note that the Tsuchiya (2003)
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Table 1 The Clapeyron slope of the MgSiO3 post-perovskite phase
transition

Clapeyron slope
(MPa K�1)

Source

Wu et al.’s scale (2008) 9.7 Hirose et al. (2006a)
Speziale et al.’s scale
(2001)

11.5 Hirose et al. (2006a)

Tsuchiya (2004) 5.0 Hirose et al. (2006a)
Holmes et al.’s Pt scale
(1989)

7.0 Ono and Oganov
(2005)

Jamieson et al.’s Au scale
(1982)

8.0 Ono and Oganov
(2005)

Theory 7.5,a 9.85b

aTsuchiya et al. (2004a,b).
bOganov and Ono (2004).

Perovskite

4500

4000

3500

3000

Te
m

p
er

at
ur

e 
(K

)

2500

2000

1500

1000

500

0
70 80 90 100 110

Pressure (GPa)
120 130

LDA GGA

140 150

Post-perovskite

C
M

B

Figure 5 Post-perovskite phase boundary calculated using the
local-density approximation (LDA) and generalized gradient
approximation. The width of the stripe displays the typical uncertainty
associated with the approximations to exchange–correlations energy of the
electrons (from Tsuchiya et al., 2004a). The dashed line is the phase
boundary proposed by combining experimental transition data (red star)
(Murakami et al., 2004) and the Clapeyron slope used to explain the
D00 topography by a solid–solid phase change (Sidorin et al., 1999). The
vertical gray bar corresponds to the pressure range across the D00

topography. The orange line corresponds to the mantle adiabat (Brown and
Shankland, 1981).
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must be made. Among these, the local-density approximation

(LDA) (Perdew and Zunger, 1981) and the generalized gradi-

ent approximations (GGAs) (Perdew et al., 1996) are the most

popular and best tested. The second issue is the computation of

free energy associated with atomic motion – quantum at low

and classical at high temperatures. Two distinct approxima-

tions exist for these limits: The quasi-harmonic approximation

(QHA) for low-temperature calculations (Wallace, 1972)

assumes atomic vibrations are harmonic, the harmonic poten-

tial is only volume-dependent, and vibrational modes do not

interact. This approximation proved to be extremely good for

several mantle minerals, including MgSiO3 perovskite and

post-perovskite (Wentzcovitch et al., 2010). However, vibra-

tions can be quite anharmonic at high temperatures near melt-

ing and atomic motion is essentially classical. In this limit, the

method of choice is MD with one caveat – the number of

atoms used in simulations needs to be large, �104, for con-

verged free energy results (Belonoshko et al., 2005). This is in

practice beyond the capability of DFT-based calculations and

MD with considerably smaller number of atoms is the norm

(e.g., Oganov et al., 2001; Zhang et al., 2013). Near phase

transitions, anharmonicity may also be very important and

quantum in nature. This can complicate greatly the calculation

and strategies are still being sought for this case (Zhang et al.,

2013). Fortunately, at relevant conditions, MgSiO3 perovskite

and post-perovskite seem to lie well within the range of validity

of the QHA (Carrier et al., 2007; Tsuchiya et al., 2005a).

Therefore, the QHA has been used in conjunction with vibra-

tional frequencies calculated using density functional per-

turbation theory to compute free energies of perovskite and

post-perovskite. The resulting phase boundary is displayed in

Figure 5. The calculated Clapeyron slope of this transition,

7.5 MPa K�1, differs somewhat from measurements (see

Table 1), and the deviation seems to be larger than the uncer-

tainty caused by the use of different exchange–correlation

functionals, that is, LDA (Perdew and Zunger, 1981) or GGA

(Perdew et al., 1996). Anharmonic effects on this phase

boundary may be important (Zhang et al., 2013) but have

not been investigated yet. Although the phase boundary uncer-

tainty is large, this transition is plausibly associated with the D00

discontinuity at �125 GPa.

2.05.2.2.2 Post-perovskite phase boundary in peridotitic
mantle
The post-perovskite phase transition has been observed not only

in pure MgSiO3 but also in natural compositions such as peri-

dotitic mantle andMORBmaterials. Murakami et al. (2005) first

reported the post-perovskite phase transition in ‘pyrolite’ (KLB-1

peridotite) above 113 GPa and 2500 K based on the Au scale by

Tsuchiya (2003), which is recalculated to 120 GPa when using

Speziale et al.’s (2001) MgO scale and thus similar to the tran-

sition pressure in pure MgSiO3 (Figure 4). Following up their

experiments, Ohta et al. (2008a) augmented the data and dem-

onstrated that the transition occurs between 116 and 121 GPa at

2500 K using the Au scale by Hirose et al. (2008a) that was

made on the basis of the Speziale et al.’s MgO scale.

Ono and Oganov (2005) performed similar XRD measure-

ments to determine the phase transition boundary in KLB-1

peridotite. Their results showed that the transition took place

at 124 GPa and 2500 K based on the Au scale proposed by

Jamieson et al. (1982), which is equivalent to 134 GPa if we
use Speziale et al.’s MgO scale. Furthermore, recent experiments

by Grocholski et al. (2012) reported the transition as between

140 and 169 GPa at 2500 K by Tsuchiya’s (2003) Au scale,

(Figure 4) which is converted into 146 and 175 GPa using the

MgO scale.

These indicate that the post-perovskite transition pressure

estimates in natural peridotite compositions determined by

earlier DAC experiments differ bymore than 20 GPa (Figure 4).

Indeed, the pressure range of the phase transition in a natural

peridotite composition (140–169 GPa) reported by

Grocholski et al. (2012) is much higher than 112–140 GPa in

(Mg0.9Fe0.1)(Al0.1Si0.9)O3 determined by the same group

rtronnes
Highlight
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(Catalli et al., 2009). The main difference between the natural

peridotite and (Mg0.9Fe0.1)(Al0.1Si0.9)O3 bulk compositions is

the presence of ferropericlase, which narrows the width (pres-

sure range) of the transition but does not increase the average

transition pressure (Sinmyo et al., 2011). The origin of incon-

sistency between Catalli et al. (2009) and Grocholski et al.

(2012) is not clear.

One possible source of discrepancy between the previous

experimental results is kinetic hindering of the post-perovskite

phase transition. Ono and Oganov (2005) repeated a number

of heating cycles with changing P–T condition for a given

sample to evaluate the growth/reduction of diffraction peaks

of perovskite and post-perovskite. However, the transition may

have been kinetically hindered in their experiments because

phase transitions are commonly sluggish after a high-pressure

phase is formed in the first heating cycle (Hirose et al., 2006b).

Grocholski et al. (2012) also heated a specific sample repeat-

edly with changing P–T conditions although the data obtained

in the first heating cycle alone defined the relatively high-

pressure condition of the phase transition.

Another source of discrepancy is thermal diffusion, often

called Soret diffusion, during laser heating. The temperature

gradient in a laser-heated sample is relatively large, typically

�10%, such that iron migrates to the low-temperature part of

the sample (Sinmyo and Hirose, 2010). The long heating

duration in laser-heated DAC experiments does not necessarily

attain chemical equilibrium (sample grain size is usually lim-

ited only to 100 nm and thus long heating duration is not

required for equilibrium) but often causes depletion in iron

at the hot spot in particular when the sample is mixed with a

metal powder of laser absorber (Sinmyo and Hirose, 2010).

Discrepancies in predicted post-perovskite phase transition

characteristics are found not only in the average transition

pressure but also in the pressure interval of the phase transition

(pressure range for coexistence of perovskite and post-

perovskite). Experiments by Ono and Oganov (2005) showed

a pressure width of less than 3 GPa, corresponding to <50 km

depth interval in the deep mantle. Ohta et al. (2008a) demon-

strated a pressure width of 5 GPa that corresponds to a depth

interval of 90 km. These are slightly broader but generally

consistent with the possible sharpness of the D00 discontinuity;
seismology has inferred a depth extent of velocity increase up

to 50–75 km (Lay, 2008; Revenaugh and Jordan, 1991; Weber

et al., 1996) or less than 30 km (Lay and Young, 1989). Note

that prediction of too wide of a two-phase domain may in part

be due to the errors in pressure determinations in the experi-

ments. On the other hand, a similar discrepancy between

seismic observations and experiments has been found for the

410 km seismic discontinuity. The effective depth extent of the

seismological expression of the olivine to b-spinel transition
may be less than half of the two-phase coexistence region

(Stixrude, 1997); possibly, this is also true for the post-

perovskite phase transition.

More problematic is the Grocholski et al. (2012) estimation

that the post-perovskite transition occurred over a pressure

interval of about 25 GPa, much broader than observed by

Ono and Oganov (2005) and Ohta et al. (2008a), and incom-

patible with the existence of a broadband seismic reflecting

boundary. Previously, Catalli et al. (2009) and Andrault et al.

(2010) also found that the width of the perovskite–post-

perovskite two-phase coexistence region is larger than 20 GPa
in Al-bearing (Mg,Fe)SiO3 bulk composition. Nevertheless,

Sinmyo et al. (2011) argued that the iron content in post-

perovskite reduces from that of perovskite in the presence of

(Mg,Fe)O ferropericlase, which acts to sharpen the transition. As

a result, Grocholski et al. (2012) suggested that Al is key for both

deepening and broadening the post-perovskite phase transition,

but previous experiments and calculations showed that the

effect of 4 wt% Al2O3 is not large enough to explain the results

of Grocholski et al. (2012) (Akber-Knutson et al., 2005; Tateno

et al., 2005; Tsuchiya and Tsuchiya, 2008). The XRD patterns by

Grocholski et al. (2012) include peaks fromnitrogen, which was

possibly contaminated during cryogenic loading. This might be

the source of the discrepancy although the effect of nitrogen is

not known. If the phase transition is too gradual to produce a

seismic reflection and only is manifested in a gradual velocity

increase with depth, it is much harder to uniquely demonstrate

the existence of post-perovskite phase in the mantle.

Surely, mantle mineralogy in the deep mantle is likely to be

complex, and transition pressures and intervals can be quite

sensitive to composition, mineralogy, temperature, etc.

Thermodynamic equilibrium calculations in aggregates con-

taining iron- and aluminum-bearing solid solutions, including

strong electronic correlation, with spin crossover in ferric iron,

and coexisting with ferropericlase, also undergoing spin cross-

over in ferrous iron, complicate tremendously the problem.

Progress is steady though, but thermodynamic modeling needs

to be aided by experimental data to give confidence in the

calculations.

2.05.2.2.3 Compositional effects
Since the lowermost mantle is a mantle convection boundary

layer, it is likely to be chemically heterogeneous due to the

accumulation of dense materials. Such dense materials may

include subducted MORB crust (Hirose et al., 2005a;

Nakagawa and Tackley, 2005; Ricolleau et al., 2010), proto-

crust formed and subducted in the early Earth (Boyet and

Carlson, 2005; Tolstikhin and Hofmann, 2005), banded iron

formation (Dobson and Brodholt, 2005), and products of late-

stage crystallization from a basal magma ocean (Labrosse et al.,

2007). Such chemical heterogeneity may produce seismic

velocity structures including rapid velocity increases and

decreases and large-scale lateral variations that make it difficult

to identify any phase transition effects, particularly since chem-

ical variations can affect the transition pressure and relative

P- and S-wave velocity changes.

The post-perovskite phase transition has been experimen-

tally observed for MORB materials. Combining with Hirose

et al. (2005a), the experiments by Ohta et al. (2008a) reported

that the transition occurred between 112 and 117 GPa at 2500 K

using the Au pressure scale proposed by Hirose et al. (2008a),

which was based on and therefore equivalent to the MgO scale.

Similar experiments by Grocholski et al. (2012) also demon-

strated that MORB underwent transition to post-perovskite

between 108 and 122 GPa, broadly consistent with Ohta et al.

(2008a). The transition pressure inMORB is lower than that in a

peridotitic mantle by at least 4 GPa. It is also noted that MORB

includes large amounts (�25%) of silica phase unlike perido-

titic mantle material, and the silica phase undergoes structural

transition from CaCl2 type to a-PbO2 structure in a similar

pressure range (Grocholski et al., 2012; Hirose et al., 2005a),

resulting in a shear-wave velocity decrease (Karki et al., 1997).
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A seismologically observed shear-wave velocity reduction at

2530 km depth (Ohta et al., 2008a) and at 2550–2750 km

depth (Konishi et al., 2009) has been attributed to these phase

transitions occurring in chemically distinct mantle regions iden-

tified as large low shear velocity provinces (LLSVPs) that may

have accumulated MORB material.

Detailed compositional effects on the post-perovskite phase

transition have been extensively studied. All experimental and

theoretical studies except Tsuchiya and Tsuchiya (2008) indi-

cate that the addition of Al stabilizes perovskite at higher

pressure relative to post-perovskite (Akber-Knutson et al.,

2005; Caracas and Cohen, 2005; Tateno et al., 2005). Experi-

ments by Tateno et al. (2005) showed that the transition starts

at 140 GPa at 2500 K in MgSiO3þ25 mol% Al2O3 and the

pressure interval of transition may be as large as 30 GPa. This

suggests that �5 mol% Al2O3 in both perovskite and post-

perovskite in a pyrolytic lower mantle may increase the initia-

tion of the post-perovskite phase transition by 3 GPa and the

pressure interval by 6 GPa compared to pure MgSiO3. The

calculations by Akber-Knutson et al. (2005) also suggested

that the transition occurs between 127 and 140 GPa at

2500 K in MgSiO3þ6.25 mol% Al2O3.

On the other hand, the effect of iron has been controversial.

Experiments performed by Mao et al. (2004) demonstrated

that the post-perovskite phase transition occurred in (Mg,Fe)

SiO3 around 110 GPa, which is much lower than the 125 GPa

determined for pure MgSiO3 by Murakami et al. (2004). More

recently, Dorfman et al. (2012) showed that post-perovskite

started to form in (Mg0.61Fe0.38Ca0.01)SiO3 bulk composition

at 87 GPa and 2150 K. These experimental results are sup-

ported by theory, which predicts that the post-perovskite struc-

ture is stable with respect to perovskite in FeSiO3 end-member

at all pressures in the Earth’s mantle (e.g., Caracas and Cohen,

2005; Stackhouse et al., 2006). Contrary to these experimental

and theoretical studies, Murakami et al. (2005) showed that

Mg-perovskite is more iron-rich than post-perovskite in a nat-

ural pyrolite bulk composition, suggesting that iron stabilizes

perovskite relative to post-perovskite. This is reinforced by the

later phase transition study on (Mg,Fe)SiO3 perovskite by

Tateno et al. (2007) and the TEM studies by Hirose et al.

(2008a,b) and Sinmyo et al. (2011).

2.05.2.2.4 Clapeyron slope of the phase transition boundary
The high positive Clapeyron slope of the post-perovskite phase

transition was first estimated by theoretical calculations,

although an unspecified solid–solid transition in the deep

lower mantle with the slope ofþ6 MPa K�1 had been proposed

to explain seismological detection of depth variations of the D00

discontinuity before the discovery of post-perovskite (Sidorin

et al., 1999). Tsuchiya et al. (2004b) calculated the phase tran-

sition boundary at high temperatures, estimating a Clapeyron

slope of þ7.5 MPa K�1. A slightly larger (about þ10 MPa K�1)

slope was predicted by Oganov and Ono (2004).

High-pressure DAC experiments also indicate a large positive

value of the Clapeyron slope for the post-perovskite phase

transition in pure MgSiO3, although the results are strongly

dependent on the pressure scale. Ono and Oganov (2005)

estimated þ7 MPa K�1 based on the Holmes et al. (1989) Pt

pressure scale. Hirose et al. (2006a) reportedþ5 MPa K�1 using

Tsuchiya’s Au scale andþ11 MPa K�1 with Speziale et al.’s MgO

scale. More recent study by Tateno et al. (2009) based on
experiments over much wider P–T range gave þ13 MPa K�1

based on the MgO scale. Similar high positive Clapeyron slope

is also found in post-perovskite phase transition in analogmate-

rial such as CaIrO3 (þ17 MPa K�1) (Hirose and Fujita, 2005).

A special thermal EoS for MgO was engineered with accu-

racy of few GPa up to �5000 K and 400 GPa to reinterpret

data on the post-perovskite transition boundary (Wu et al.,

2008). It combined consistently DAC data, ultrasound velocity

data, and first-principles results. The experimental post-

perovskite phase boundary obtained using this EoS gave a

Clapeyron slope more consistent with those obtained by first-

principles calculations (Oganov and Ono, 2004; Tsuchiya

et al., 2004a,b) (see Table 1). It also supported the idea that

the post-perovskite phase transforms back to perovskite in a

high temperature gradient just above the CMB (Hernlund

et al., 2005).

The determination of the Clapeyron slope for a natural

mantle composition is more difficult than for pure MgSiO3,

because the transition (1) occurs over some pressure range and

(2) is more sluggish in a multicomponent system. Experiments

performed by Ohta et al. (2008a) did not tightly constrain but

best estimated the Clapeyron slope in a pyrolytic mantle to be

þ8�4 MPa K�1. Grocholski et al. (2012) estimated

þ5.6�0.8 MPa K�1 based on Tsuchiya’s Au scale, which is

very similar to the þ5 MPa K�1 for pure MgSiO3 using the

same pressure scale (Hirose et al., 2006a) and therefore likely

corresponds to�þ11 MPa K�1 with the MgO scale. These

results suggest that the Clapeyron slope of post-perovskite

phase transition in a natural mantle composition is similar to

that in MgSiO3 and may be as high as 11–13 MPa K�1. Given

the likelihood of substantial lateral variations in temperature

in the D00 thermal boundary layer, there are likely to be sub-

stantial depth variations in the phase boundary and any asso-

ciated seismic velocity changes.

2.05.2.2.5 The stability of MgSiO3 post-perovskite at
extreme pressures
The stability of the post-perovskite phase with increasing

pressure is important for understanding the internal structure

and dynamics of large rocky planets – super-Earth-type exo-

planets – which should be relatively abundant and may exist

around as many as 23% of stars (Howard et al., 2010). Early

studies focused on the internal structure of these planets and

on the viability of plate tectonics (Seager et al., 2007; Sotin

et al., 2007; Valencia et al., 2006, 2007a,b,c). More recent

dynamical modeling studies have included some depth-

dependent properties (Tackley et al., 2013), but not the effect

of deeper phase transitions, which were considered by van

den Berg et al. (2010b). Views on the ‘next’ phase transition in

MgSiO3, the post–post-perovskite transition, are still evolving

but the trend toward full dissociation into elementary oxides,

MgO and SiO2 (Umemoto et al., 2006a,b), is unaltered. It just

seems that the dissociation process is gradual, not direct.

MgSiO3 post-perovskite was first predicted to dissociate into

CsCl-type MgO and cotunnite-type SiO2 at �11 Mbar

(Umemoto et al., 2006b). This prediction was slightly revised

after the identification of another polymorph of SiO2, the

Fe2P-type phase (Tsuchiya and Tsuchiya, 2011; Wu et al.,

2011), with the latter being stable at low temperatures but

transforming to the cotunnite-type phase at �6000 K. A more

gradual dissociation process was later identified (Umemoto
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and Wentzcovitch, 2011). The two-stage dissociation path-

way consists in the gradual exsolution of MgO from MgSiO3

2MgSiO3 pPvð Þ ! MgSi2O5 P21=c-typeð Þ þMgO CsCl-typeð Þ
at �9 Mbar, followed by full dissociation of MgSi2O5

MgSi2O5 P21=c-typeð Þ þMgO CsCl-typeð Þ
! 2MgO CsCl-typeð Þ þ 2SiO2 Fe2P-typeð Þ

at �21 Mbar. The new P21/c-type MgSi2O5 phase was iden-

tified by following dynamical instabilities in MgSi2O5 in the

structure of CaGe2O5 with space group Pbam (Nemeth et al.,

2007), a post-titanate-type phase. This phase has 32 atoms per

cell, and it has two types of silicon, one ninefold- and eightfold-

coordinated, while magnesium is ninefold-coordinated.

This finding raised even more questions about the dissoci-

ation process. Could, alternatively, SiO2 also exsolve gradu-

ally? A possible exsolution mechanism is

2MgSiO3 pPvð Þ ! Mg2SiO4 newð Þ þ SiO2 Fe2P-typeð Þ
An adaptive genetic algorithmwas developed used to search

for stable structures with composition Mg2SiO4 and to repeat

the search for structures with composition MgSi2O5 (Wu et al.,

2014). This search confirmed the stability of the P21/c-type

MgSi2O5 phase and identified a new high-pressure form of

Mg2SiO4. This structure is body-centered tetragonal with

space group I-42d. The cation configuration of this phase is

identical to that of Zn2SiO4-II whose space group is I-42d also

(Marumo and Syono, 1971). The difference between I-42d-

type Mg2SiO4 and Zn2SiO4-II is in the oxygen arrangement.

Mg2SiO4 is much more closely packed than Zn2SiO4-II. Both

Mg and Si atoms in Mg2SiO4 are eightfold-coordinated, while

Zn and Si atoms in Zn2SiO4-II are fourfold (tetrahedrally)-

coordinated. The crystal structures of I-42d-type Mg2SiO4 and

P21/c-type MgSi2O5 together with the corresponding local

structures are shown in Figure 6.

This enlarged composition space of possible structures now

reveals a more complex three-step dissociation process –

MgSiO3 post-perovskite first decomposes into two phases at

7.7 Mbar, one rich (poor) and one poor (rich) in SiO2 (MgO):

3MgSiO3 pPvð Þ ! Mg2SiO4 I-42d-typeð Þ
þMgSi2O5 P21=c-typeð Þ

In the presence of Mg2SiO4, MgSi2O5 breaks down into

Mg2SiO4 and SiO2 at 12.5 Mbar:
Mg2SiO4 (S.G.: I-42d)

MgO8

SiO8

(a) (b)

c

ab

Figure 6 Crystal structures of I-42d Mg2SiO4 and P21/c MgSi2O5.
Mg2SiO4 I-42d-typeð Þ þMgSi2O5 P21=c-typeð Þ
! 3

�
2 Mg2SiO4 I-42d-typeð Þ þ 3

�
2SiO2 Fe2P-typeð Þ

The complete dissociation into oxides then takes place at

�30.9 Mbar:

3
�
2 Mg2SiO4 I-42d-typeð Þ þ 3

�
2SiO2 Fe2P-typeð Þ

! 3MgO CsCl-typeð Þ þ 3SiO2 Fe2P-typeð Þ
This sequence of transitions is shown in Figure 6. The disso-

ciation starts at 8 Mbar and is completed at �31 Mbar. This

pressure range is expected to change somewhat at high temper-

atures though. This prediction contrasts with the direct dissocia-

tion previously predicted at�11 Mbar (Umemoto et al., 2006b)

and the two-step exsolution of MgO predicted between �9

and 21 Mbar (Umemoto and Wentzcovitch, 2011). Among this

latest sequence of dissociation transitions, only the first two are

relevant for understanding the mantle of terrestrial exoplanets

with up to 10 Earth masses. Mantle pressures in these planets

are expected to reach �14 Mbar and temperatures �6,000 K

(Sotin et al., 2007). In overall, these results suggest that more

complex sequences of phase transitions could be found by

considering intermediate phases with different compositions.

The large ionic (LDA) gaps of at least 5 eV found in all phases

suggest that phases with different molar fractions of MgO and

SiO2 with even more complex structures are the most natural

candidates for future investigations.
2.05.3 D00 Region and Evidence for Post-Perovskite

Seismological observations have long indicated a relatively sim-

ple structure of the lower mantle with smooth P- and S-wave

velocity and density increases with depth from the transition

zone down to the much more heterogeneous D00 region (see

‘Deep Earth Structure’). In the lowermost 300–500 km of the

mantle, seismic wave travel times andwaveforms indicate reduc-

tions in radial velocity gradients, abrupt increases and decreases

in velocity, increases in short-period wave scattering, increase in

anisotropic properties, and strong lateral gradients in structure.

The D00 region has a preponderance of large-scale (degree-2 and

degree-3) variations, with two LLSVPs extending upward several

hundred kilometers from the CMB beneath the southern Pacific

and Africa and high P- and S-wave velocities below the circum-

Pacific subduction zones. Strong S-wave and intermittent

P-wave velocity increases 100–300 km above the CMB have
MgSi2O5 (S.G.: P21/c)

MgO9

Si1O9

Si2O8
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been observed primarily in the high-velocity regions, which

are generally thought to have lower than average temperatures

due to the downwelling of oceanic lithosphere. A widely

observed strong S-wave velocity increase of 2–3% several hun-

dred kilometers above the CMB is often designated the D00

discontinuity. It was more than 20 years after its initial observa-

tion by Lay and Helmberger (1983) that the post-perovskite

phase transition first provided a possible explanation for this

structure. The expectation that perovskite-to-post-perovskite

transition will occur at lower pressure for lower temperatures

suggests that any associated seismological signature should be

found at shallower depth in higher-velocity regions. The seis-

mological structures detected in the lowermost mantle require

both thermal and chemical heterogeneities and dynamical

processes that sustain the complexity. The consideration of

possible manifestations of deep mantle post-perovskite must

allow for significant variations in temperature and composition

(Lay and Garnero, 2007).
2.05.3.1 Elasticity

The post-perovskite transition in MgSiO3 at conditions similar

to those expected at the D00 discontinuity offers a candidate

framework for interpreting the properties of this region. How-

ever, the complexity of the D00 region and the uncertain local

mineral composition raise questions about its geophysical sig-

nificance. The contrast between the elastic properties of perov-

skite and post-perovskite is critical to establishing the presence

of post-perovskite in this region. In particular, one would like to

verify whether (i) shear and longitudinal velocity changes across

the D00 discontinuity and (ii) the anticorrelation between shear

and bulk velocity heterogeneities in this region can be better

understood by invoking the post-perovskite transition.

The elasticity of perovskite and post-perovskite phases has

been calculated by first principles using two complementary

techniques: MD (Oganov et al., 2001; Stackhouse and

Brodholt, 2007) and QHA in conjunction with phonon frequen-

cies (Wentzcovitch et al., 2004, 2009). The QHA method offers

detailed information in a continuum in pressure and tempera-

ture parameter space and is very useful to compute pressure and

temperature gradients and lateral heterogeneities in great detail.

The elastic coefficients of MgSiO3 post-perovskite are

remarkably different from those of perovskite (see Figure 7).

Post-perovskite is a layered structure, expands more anisotrop-

ically, and has more complex pressure- and temperature-

dependent elastic behavior than perovskite (Tsuchiya et al.,

2004b). However, its aggregate moduli do not differ dramati-

cally from those of perovskite. The adiabatic bulk moduli of

both phases, K (Figure 8), are similar at P>80 GPa. This is also

true for other thermodynamic properties (Tsuchiya et al.,

2005a). The shear modulus, G, of post-perovskite is larger

and has larger pressure and temperature gradients at deep

lower mantle conditions. Considering that post-perovskite

is�1.5% denser than perovskite at D00 conditions, the resulting
effect on velocities are easy to rationalize (see Figure 9).

Because of G, post-perovskite’s VS is larger and has larger

pressure and temperature gradients. The longitudinal velocity,

VP, is a little larger and has slightly larger gradients because ofG

as well (see Figure 9). In contrast, the bulk velocity, VF, is a

smaller than that of perovskite because of their similar K and
the larger density (r) of post-perovskite. Although minor dif-

ferences remain, these results are in general agreement with

those based on first-principles MD (Oganov et al., 2001;

Stackhouse and Brodholt, 2007).
2.05.3.2 Velocity Jumps and Lateral Heterogeneity

These predicted contrasts between perovskite and post-

perovskite velocities manifest across the phase transitions as a

positive jump in VS, negative jump in VF, and small positive

jump in VP (see Figure 10) (Wentzcovitch et al., 2006; Wookey

et al., 2005). These results are consistent with seismic velocity

jumps observed 200–300 km above the core–mantle boundary

in certain places but most easily detected beneath regions of

past subduction, presumably cold places, such as beneath

Central America (e.g., Hutko et al., 2008, 2009; Lay and

Helmberger, 1983). There, DVS>DVP and DVS�2–3% are

observed, but this observation is clearly a regional property of

a notably heterogeneous layer (Garnero, 2004; Lay and

Garnero, 2004; Lay et al., 1998b, 2004; Wysession et al., 1998).

A well-known property of D00 revealed by early global

tomography models (e.g., Masters et al., 2000) is anti-

correlation between large-scale lateral VF and VS heterogene-

ities. The likely cause(s) of heterogeneities is best addressed by

comparing simultaneously the magnitude of average heteroge-

neity ratios such as RS/P¼ (@ ln VS/@ ln VP)P and RF/

S¼(@ ln VF/@ ln VS)P, to computational predictions or experi-

mental measurements at relevant conditions (Karato and

Karki, 2001). It is known that in the shallow lower mantle,

RS/P�2.3 and RF/S�0.0, whereas in D00, RS/P�3.4 and RF/

S��0.2 (Masters et al., 2000). Heterogeneity ratios produced

by isobaric temperature changes in pure post-perovskite and

perovskite aggregates are displayed in Figure 11(a) and 11(b)

along with the seismic parameters extracted from Masters et al.

(2000) and reported by Karato and Karki (2001). In pure

perovskite aggregates, RS/P increases with pressure and temper-

ature but reaches at most 2.3 at 135 GPa and 4000 K

(Figure 11(b)), whereas RF/S is approximately pressure-inde-

pendent and slightly decreases with temperature to reach 0.16

at the same conditions (see Figure 12(b)). In post-perovskite,

RS/P decreases with pressure, but because of its larger (@G/@T )P,

it increases more rapidly with temperature to reach �2.5 at the

same conditions (Figure 11(a)). RF/S is smaller for post-

perovskite, 0.1, at these conditions (see Figure 12(a)). It has

been argued that anelasticity, anisotropy, and lateral variations

in calcium content in the deepest mantle might be necessary to

produce large values for RS/P and negative values for RF/S,

unless there is a phase transformation (Karato and

Karki, 2001).

Figures 11(c) and 12(c) compare these heterogeneity ratios

caused by the post-perovskite transition along the calculated

phase boundary (Figure 5). RS/P>6 and RF/S<�0.5 results

from this phase change. This indicates that lateral variation in

post-perovskite abundance can enhance these seismic param-

eters as observed. This effect was estimated by Oganov and

Ono (2004) assuming the temperature dependences of perov-

skite and post-perovskite velocities were the same. Coexisting

secondary phases such as ferropericlase and CaSiO3 perovskite

will decrease these anomaly ratios. Besides, the post-perovskite
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phase transition on solid solutions should open a binary loop

that will smooth these velocity contrasts (Grocholski et al.,

2012). Nevertheless, the effect of lateral variations in post-

perovskite abundance on these seismic parameters seems very

robust and indicative of the presence of post-perovskite in the
D00 region, as later supported by the statistical analysis of

Trampert et al. (2004).

As pointed out earlier, the topography of D00 is consistent
with a solid–solid phase transition with positive Clapeyron

slope (�4–10 MP K�1) induced by lateral temperature
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variations (Sidorin et al., 1999). The anticorrelation between

VF and VS heterogeneities and their geographic locations are

also consistent with this assumption if the post-perovskite

phase is abundant in the D00 region. Beneath the central

Pacific, VF is faster and VS is slower than their spherical aver-

ages, whereas beneath the circum-Pacific, the opposite is

observed. These regions are generally considered to be hotter

and colder than average, respectively. The positive Clapeyron

slope suggests that hotter regions should contain less post-

perovskite and therefore have faster VF and slower VS, whereas

colder regions should contain more post-perovskite and have

slower VF and faster VS, as observed. Lateral variations in phase

abundances alone do not account for the complex nature and

properties of D00. Nevertheless, this perspective is helpful as a

reference starting model to attempt understanding the D00

region. Secondary phases and minor element partitioning on

the post-perovskite phase boundary and on aggregate elasticity,

particularly the important effect of iron (Mao et al., 2005),

must be addressed first before a more quantitative reference

mineralogical model for D00 is developed. The origin of the

negative RF/S above D00 indicated in Figure 12 is also unclear.
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There is indication that this effect could, for instance, originate

in lateral temperature variations in the spin crossover in ferro-

periclase (Wu and Wentzcovitch, 2013; Wu et al., 2013), but

the extent to which this can be explained is still not clear.

These results suggest that a third heterogeneity ratio,

Rr/S¼(@lnr/@lnVS)P, should be positive for the phase transi-

tion and perhaps increase with depth in the lowermost mantle

(see lowest portion of Figure 13), unless other effects or chem-

ical heterogeneities (Humayun et al., 2004; Karato and Karki,

2001; Lay et al., 2004) occur simultaneously. Some 3D density

models do not support this prediction (Ishii and Tromp,

1999), whereas others do (Romanowicz, 2001). Estimates of

this parameter obtained by joint inversions of seismic and

geodynamic data also tend to offer a positive ratio (Forte

et al., 1994). It appears that until a clear consensus on the 3D

structure of the density in the mantle is reached, this issue will

remain open. Recently, it has been pointed out that an average

excess density of 0.4% in the lowermost mantle is admissible

within normal mode constraints (Garnero et al., 2004), in

agreement with our expectations.
2.05.3.3 Anisotropy

Significant shear-wave polarization anisotropy has been

detected in the lowermost mantle, in particular under the
circum-Pacific regions, where the horizontally polarized

S-wave velocity (VSH) is faster by 1–3% than the vertically polar-

ized S-wave velocity (VSV) (e.g., Section 1.19; Lay et al., 1998a;

Panning and Romanowicz, 2004). The overlaying lower mantle

appears to have less anisotropic effects on seismic waves, indi-

cating that D00 structure has distinct anisotropic properties. Since
single-crystal elastic anisotropy of post-perovskite is strong, such

seismic anisotropy is plausibly attributed to the lattice-preferred

orientation (LPO) of post-perovskite, although the anisotropy

of ferropericlase has been also stressed (Wentzcovitch et al.,

2006; Yamazaki and Karato, 2002; Yamazaki et al., 2009).

The LPO of a mineral depends on its deformation mecha-

nisms, particularly the activated slip systems. For post-

perovskite, the layering plane (01 0) was originally suggested

to be a dominant slip plane from crystallographic consider-

ations (Iitaka et al., 2004; Murakami et al., 2004; Oganov and

Ono, 2004). Indeed, the (01 0) slip plane is supported by the

deformation experiments on CaIrO3 analog (Miyajima et al.,

2006; Niwa et al., 2007). Other slip systems such as (10 0) or

(11 0) have been also suggested by both theory and experi-

ments on MgSiO3 and MgGeO3 (Merkel et al., 2006, 2007;

Oganov et al., 2005). Walte et al. (2009) pointed out that the

earlier deformation experiments in a DAC by Merkel et al.

(2006, 2007) observed ‘phase transformation texture,’ which

is different from ‘deformation texture.’
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More recent experiments by Okada et al. (2010) first dem-

onstrated that (00 1) is a dominant slip plane of post-

perovskite using MgGeO3 analog. Miyagi et al. (2010) argued

that the deformation texture of MgSiO3 post-perovskite is the

same as the transformation texture and concluded that (00 1)

is the slip plane. This is consistent with first-principles results

(Wentzcovitch et al., 2006) (see Figure 14). Hirose et al.

(2010) performed high-temperature deformation experiments

on MnGeO3 post-perovskite and confirmed the (00 1) slip

plane is dominant at lower mantle P–T conditions.

For the (00 1) slip plane, observed seismic anisotropy can

be reconciled with the LPO of post-perovskite, because the

perfect alignment of post-perovskite with (00 1) parallel to

the horizontal plane produces 8–15% shear splitting, larger

than for any other slip system. The maximum 3% polarization

anisotropy observed in the D00 layer can be accounted for by

LPO of post-perovskite with less than 25% alignment on the

basis of the elastic constants predicted by Stackhouse and

Brodholt (2007).
P (GPa)

110 120 130100

Figure 14 Shear-wave splittings, (VSH�VSV)/VS, in MgSiO3

post-perovskite and perovskite, along the thermodynamic phase
boundary shown in Figure 5 with respective uncertainties. These results
correspond to horizontally (VSH) and vertically (VSV) polarized shear
waves propagating in transversely isotropic aggregates with three
possible alignments of the major crystalline axes along the vertical
direction.
2.05.4 Transport Properties

2.05.4.1 Viscosity

The rheological properties of MgSiO3-rich post-perovskite are

of importance to the dynamics in the D00 layer. Relevant exper-
iments on the deformation of post-perovskite and on its grain

growth rate are difficult to perform at the lowermost mantle

high P–T conditions. Thus, extensive experiments using the

CaIrO3 analog have been made at low pressures (<3 GPa).

Yoshino and Yamazaki (2007) examined grain growth

kinetics of CaIrO3 perovskite and post-perovskite aggregates

and found that the grain growth of post-perovskite is distinctly

slower than that of perovskite. Such sluggish grain growth may

be caused by the strongly anisotropic shape of post-perovskite.

Grain-size-sensitive diffusion creep is the dominant deforma-

tionmechanism of post-perovskite, at least right after the phase

transformation in descending slabs, and the initially small

grain size may induce significant softening of the D00 layer.
The slow growth rate of post-perovskite maintains its small

grain size and resulting weakness.
Hunt et al. (2009) carried out deformation experiments on

both perovskite and post-perovskite in the CaIrO3 system

below 3 GPa. Their results demonstrated that post-perovskite

is at least five times weaker, and possibly significantly more so,

than perovskite. They performed experiments with a grain size

sufficiently large to be outside the field of grain-size-sensitive

plasticity. This confirms that weakening is not an effect of

grain-size reduction.

Theoretical calculations by Ammann et al. (2010) demon-

strated that diffusion of Mg2þ and Si4þ in post-perovskite is

extremely anisotropic. Assuming diffusion creep is a dominant

deformation mechanism of post-perovskite in the D00 layer, the
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fast diffusion direction will render post-perovskite up to four

orders of magnitude weaker than perovskite.

These studies suggest strong viscosity contrast between

perovskite and post-perovskite. However, the inference of

very weak post-perovskite remains debated, with other investi-

gations arguing for a neutrally viscous or even a stronger post-

perovskite (Karato, 2011). The rheology of post-perovskite has

a first-order influence on mantle dynamics and thermal evolu-

tion (Cizkova et al., 2010; Nakagawa and Tackley, 2006; Tosi

et al., 2010). If post-perovskite in the mantle is actually very

weak, it significantly amplifies the influence relative to that

calculated for post-perovskite with neutral viscosity.
2.05.4.2 Thermal Conductivity

The thermal boundary layer at the bottom of the mantle is a

region where heat is transported predominantly by conduction

from the core into the mantle. Conductive heat is given by the

product of temperature gradient and thermal conductivity of the

lowermost mantle materials. With known thermal conductivity

values, one can estimate heat flow from thermal gradient (see a

review by Lay et al., 2008), or vice versa.

Researchers often assume a thermal conductivity, k, of

10 Wm�1K�1 for the lowermost mantle, based on Stacey

(1992). The thermal conductivity is the sum of lattice compo-

nent and radiative component. The radiative part of the ther-

mal conductivity of perovskite has been measured at high

pressure by Goncharov et al. (2008) and Keppler et al.

(2008). The former study reported only �0.5 Wm�1K�1 at

the top of D00 layer and possibly �1 Wm�1K�1 at the CMB

(radiative thermal conductivity increases with increasing

temperature), which is relatively small compared to lattice

contribution. On the other hand, the latter experiments dem-

onstrated that the radiative component contributes greater

than 5 WK�1m�1 at the CMB, suggesting that the conventional

value of 10 Wm�1K�1 underestimates the actual thermal con-

ductivity. The source of inconsistency between these two stud-

ies is not clear, and thus, the radiative part of the thermal

conductivity for perovskite (and post-perovskite) remains an

open question.

For the lattice component of thermal conductivity, Osako

and Ito (1991) obtained the conductivity of MgSiO3 perovskite

from the measurements of thermal diffusivity at ambient con-

dition (conductivity is calculated from diffusivity, density, and

heat capacity). Both high-pressure measurements and calcula-

tions have commenced recently. Manthilake et al. (2011) mea-

sured lattice thermal diffusivity of MgSiO3-rich perovskite and

(Mg,Fe)O ferropericlase up to 26 GPa and 1073 K in a multi-

anvil apparatus, the pressure corresponding to the uppermost

lower mantle. They also examined the effect of chemical impu-

rity, demonstrating that only 3 mol% Fe and 2 mol% Al in

perovskite significantly diminish the diffusivity at 300 K

although less at higher temperatures of the lower mantle.

Relatively large extrapolation of their measurements provides

k�8.4�1.2 Wm�1K�1 at the CMB, comparable to the con-

ventional value, assuming radiative contribution is small.

More recently, Ohta et al. (2012b) measured thermal diffusiv-

ity of MgSiO3 perovskite and post-perovskite up to 144 GPa at

room temperature, by applying thermoreflectance method in a

DAC (Yagi et al., 2011). Considering the value for
ferropericlase and the temperature effect of reducing the con-

ductivity of perovskite from Manthilake et al. (2011), Ohta

et al. estimated a lattice conductivity of 11 Wm�1K�1 at the

CMB if perovskite is present there. On the other hand, Ohta

et al. (2012b) also found that MgSiO3 post-perovskite exhibits

60% higher thermal diffusivity than perovskite at equivalent

condition, approximately consistent with the measurements of

the CaIrO3 analog that indicate that the thermal conductivity

of post-perovskite phase is nearly twice as high as that of

perovskite phase (Hunt et al., 2012; Keawprak et al., 2009).

The thermal conductivity of MgO has been calculated at

lower mantle P–T conditions in recent studies (de Koker et al.,

2012; Haigis et al., 2012; Stackhouse et al., 2010; Tang and

Dong, 2010). All such calculations show very high conductiv-

ity of MgO, far exceeding the values of perovskite, although the

results vary from �80 to 150 Wm�1K�1 at the CMB. The

conductivity of MgSiO3 perovskite was also calculated by

Haigis et al. (2012), predicting 10.8 Wm�1K�1 for a mixture

of MgSiO3 perovskiteþMgO, again consistent with the tradi-

tional value. More recent calculations by Dekura et al. (2013)

showed somewhat lower value of about 5 Wm�1K�1 for peri-

dotitic material at the CMB. The calculations by Haigis et al.

(2012) also demonstrated that the thermal conductivity

MgSiO3 post-perovskite is 167�25 Wm�1K�1 at 135 GPa

and 300 K, which is much higher than 65�14 Wm�1K�1

measured by Ohta et al. (2012b). Ohta et al. assumed a tem-

perature effect the same as that for perovskite, while Haigis

et al. predicted a much larger temperature effect. As a result, the

former concluded 60% higher conductivity than perovskite,

but the latter suggested very similar conductivity.

These results are summarized in Table 1. If MgSiO3-rich

perovskite is present right above the CMB, the thermal conduc-

tivity of the thermal boundary layer may be 8–11 Wm�1K�1 or

higher if radiative conductivity is �5 Wm�1K�1. On the other

hand, if post-perovskite is the principal mineral in the thermal

boundary layer, the conductivity can be much larger, depend-

ing on the temperature effect on the conductivity of post-

perovskite.
2.05.4.3 Electric Conductivity

Relatively high electric conductivity of the lowermost mantle

can cause strong electromagnetic coupling between the solid

mantle and liquid core, which may play an important role in

modulating the length of a day (rotational speed of the Earth’s

crust and mantle) (Holme, 1998) and precession of the Earth’s

rotation axis (Buffett et al., 2000). Enhanced electric conduc-

tivity of post-perovskite relative to perovskite was originally

suggested by measurements for the CaIrO3 analog (Ohgushi

et al., 2006). This is because electrons are expected to be more

conducting within the a–c planes owing to the layered structure

of post-perovskite. Ono et al. (2006) considered high electric

conductivity of MgSiO3-rich post-perovskite in the Earth’s low-

ermost mantle, based on earlier shock-wave measurements of

Al2O3 with post-perovskite structure. They also discussed the

idea that a highly conductive lowermost mantle could be the

cause of changes in the length of day.

The electric conductivity of the lower mantle has been

unknown until recently. Xu et al. (2000) measured the con-

ductivity of perovskite under the topmost lower mantle
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conditions and modeled the lower mantle conductivity profile

by extrapolating the experimental data to much higher P and T.

However, subsequently discovered high-spin to low-spin cross-

overs for iron (Badro et al., 2003) in (Mg,Fe)O ferropericlase,

perovskite, and post-perovskite (Murakami et al., 2004) are

now known to affect the electric conductivity to a great extent.

Iron spin crossover occurs in ferropericlase in the middle to

deep lower mantle (Lin et al., 2007a,b; Tsuchiya et al., 2006).

While the spin state of ferrous iron in perovskite has been

controversial (Badro et al., 2004; McCammon et al., 2008;

Umemoto et al., 2010), it is generally accepted that ferric iron

undergoes spin crossover in the mid-lower mantle (Stackhouse

et al., 2007; Zhang and Oganov, 2006).

Lin et al. (2007b) and Ohta et al. (2007) first demonstrated

the effect of iron spin crossover on the electric conductivity of

(Mg,Fe)O ferropericlase experimentally; the conductivity

increased with increasing pressure but suddenly diminished

above �70 GPa at room temperature, similar to the pressure

range of spin crossover in ferropericlase. The electric conduc-

tion in high-spin ferropericlase is dominated by a small-

polaron process of electron hopping between ferrous and ferric

iron sites (Dobson and Brodholt, 2000). The unpaired elec-

trons in the 3d orbital play important roles in this process, but

the number of unpaired electrons of ferric iron decreases from

four to zero at the spin crossover, thus resulting in a marked

reduction in the conductivity. Similar reduction in the electric

conductivity of Fe-bearing MgSiO3 perovskite has been also

demonstrated at both 300 K (Ohta et al., 2010a,b) and high

temperatures (Ohta et al., 2008b). These are likely caused by

the spin crossover in ferric iron.

The electric conductivity of (Mg0.9Fe0.1)SiO3 post-

perovskite has been measured to be on the order of

102 Sm�1, higher by three orders of magnitude than that of

perovskite with iron in the low-spin state (Ohta et al., 2008b).

This is attributed to the shorter Fe–Fe distance in post-

perovskite structure, in which Mg and Fe form sheets inter-

layering with SiO6 (Figure 2). The conductivity of a peridotitic

mantle material was also measured in a wide P–T range that

covers almost all lower mantle conditions (Ohta et al., 2010a).

The results showed 101.5 Sm�1 at the base of the mantle. This

is somewhat lower than that of single-phase (Mg0.9Fe0.1)SiO3

post-perovskite, because iron content in post-perovskite coex-

isting with ferropericlase in a pyrolytic bulk composition is less

than 5 mol% (Murakami et al., 2005; Sinmyo et al., 2011).

Alternatively, subducted MORB crust (Ohta et al., 2010a) or

metallic FeO possibly exsolved from liquid outer core with

cooling (Frost et al., 2010; Ohta et al., 2012a,b) will have

enhanced electric conductivity near the base of the mantle

and may be responsible for strong electromagnetic coupling

between the solid mantle and liquid core.

Outer core

Figure 15 The intersections of the local one-dimensional geothermal
with the Clapeyron slopes. T-int marks the temperature of the
post-perovskite transition at the core–mantle boundary. The relative
positioning between T-int and T-cmb determines whether
double-crossing of the geotherm with the phase boundary occurs.
Symbols t1, t2, b1, and b2 indicate the top and bottom crossings. a, k,
and � represent, respectively, the thermal expansivity, thermal
diffusivity, and viscosity of the lower mantle, and they depend on
thermodynamic and chemical variables.
2.05.5 Geodynamic Consequences of Post-Perovskite

The role of phase transitions in mantle dynamics has histori-

cally been thought to be limited to the upper mantle, because

until 10 years ago, only the olivine to spinel and the spinel to

perovskite transitions were viewed as important. Before the

discovery of post-perovskite, researchers focused on the issue

of layered versus whole-mantle convection in the presence of
phase transitions (Christensen and Yuen, 1984, 1985; Honda

et al., 1993; Schubert et al., 1975; Tackley et al., 1993) and the

so-called avalanche events associated with the phase transition

at 660 km depth. This phenomenon, first found by

Christensen and Yuen (1985), in 2D models generated much

greater attention in 3D (Honda et al., 1993; Tackley et al.,

1993) and has attracted the attention of many geochemists

(Allegre, 1997).

When the discovery of post-perovskite transition came

along, it was recognized that this phase transition is funda-

mentally different from other mantle phase transitions because

of its proximity to the CMB. The dynamical situation resembles

the situation of the spinel to perovskite transition in the

Martian mantle in which that phase transition may lie very

close to the Martian CMB (Breuer et al., 1997; Harder and

Christensen, 1996; Weinstein, 1995). Indeed, in the Earth’s

mantle, post-perovskite may act as a gatekeeper for mantle

circulation descending to the CMB.

The D00 region has long been recognized as prone to dynam-

ical instabilities because of the thermal boundary layer above

the CMB ( Jones, 1977; Stacey and Loper, 2007; Yuen and

Peltier, 1980). The implications of the post-perovskite inter-

pretation of the D00 layer, with the transition having a steep

positive Clapeyron slope, are quite profound for the dynamics

of the deep mantle. The rheology of post-perovskite may also

be non-Newtonian and viscosity may be lower than that of

perovskite because of the large stresses present at the boundary

layer of mantle convection.
2.05.5.1 Dynamical Effects of Post-Perovskite in Earth

Geophysicists have examined the influence of post-perovskite

on both thermal and thermochemical convection (Tackley

et al., 2007; Yuen et al., 2007). Figure 15 shows the situation

that arises for two Clapeyron slopes that depend on
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composition or how they would be crossed by a temperature

curve associated with a thermal boundary layer above the

CMB. We note that because of the uncertainties of the physical

parameters, such as the depth variations of thermal expansivity

and bulk moduli with depth, it is very difficult to ascertain the

relative dynamical importance of each of these factors. With

the post-perovskite transition dependent on composition, a

great variety of complex behavior may arise, producing struc-

tures, such as the multiple crossings of the temperature curve

by the two different types of post-pervoskite transition (see

Figure 15, where t1, t2, b1, and b2 are the four intersections

due to compositionally dependent phase boundaries).

The nature of double-crossing of the Clapeyron slope by the

local geotherm was recognized early on by Hernlund et al.

(2005) who emphasized at that time that the post-perovskite

phase boundary can be employed to constrain many impor-

tant thermal parameters in solid-earth geophysics, such as its

phase change location relative to the melting curve of candi-

date mantle materials. This hypothesis has prompted seismo-

logical ventures into relating imaged structures in the D00 layer
as thermal and compositionally influenced post-perovskite

phase transitions, with attendant absolute temperatures and

heat flow estimates (Hutko et al., 2006; Lay et al., 2006; van der

Hilst et al., 2007).

From a dynamical standpoint, the 1.5% density change of

the post-perovskite transition being may have impact on the

local dynamics. This density change is equivalent to more than

a thousand degree change in thermal buoyancy, because of the

relatively low thermal expansion coefficient of around 10�6 in

the deep lower mantle. Up to now, this dynamical effect has

not been explored for post-perovskite transition at all and

requires further examination. Latent heat effects can poten-

tially be important as a feedback mechanism for exothermic

phase transitions when coupled with variable viscosity and

viscous heating (Steinbach and Yuen, 1994) and would require

more investigation especially for the possibly low-viscosity

post-perovskite regions in the deep mantle (Ammann et al.,

2010; Cizkova et al., 2010).
Core-mantle 
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Figure 16 Schematic diagram showing the undulations of the phase bound
upwellings and cold downwellings. T1, T2, T3, and T4 are the isotherms asso
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The dynamical influences of the phase boundary distor-

tions are illustrated schematically in Figure 16 by a sketch of

the phase boundary of post-perovskite (dashed curve) in the

cold downwellings and hot upwellings. For temperature at the

CMB greater than the temperature of the intercept in the post-

perovskite transition, we note that beneath hot plumes, there

can exist a patch of hot perovskite. Only as the Earth cools off

does the perovskite hole disappear and become filled with

post-perovskite. The buoyancy of the hot plumes is increased

by the deflection of the lighter perovskite phase downward. In

the downwelling, we see also the greater negative buoyancy

provided by the phase boundary being pushed upward by

the negative thermal contrast. For isotherm T3, there may

be another zone of perovskite right above the CMB, delin-

eating what is now called as the ‘double-crossing’ phenome-

non (Hernlund et al., 2005). A Clapeyron slope dP/dT

of �10 MPa K�1 can cause undulations of �100 km in the

depth of the phase boundary for thermal perturbations of

several hundred degrees.

Electric conductivity increases dramatically across the post-

perovskite phase boundary (Ohta et al., 2010b) and aids the

leakage of core electric currents to the mantle that can promote

enhanced Joule heating at different sites over the CMB, follow-

ing magnetic jerk events. But of greater dynamical interests are

the thermal conductivity and viscosity of post-perovskite,

which may, respectively, increase by around 50% and

decrease by a factor of 50–100, as discussed in the preceding

text. These properties would be conducive to the development

of small-scale convection within the D00 layer (Cizkova et al.,

2010; Samuel and Tosi, 2012; Schott et al., 2002).

From a dynamical standpoint, what new issues has the

post-perovskite transition raised? First of all, we expect that

the exothermic character of the post-perovskite transition

should tend to promote instability in the D00 layer, increasing
the heat flow and interior mantle temperature and increasing

the number and time dependence of mantle plumes. Some of

these predictions were confirmed by Nakagawa and Tackley

(2004) for constant physical properties. Figure 17 shows a
boundary

T4

T3

PV

PPV

Cold downwelling

ary of the perovskite-to-post-perovskite transition due to hot
ciated with the two types of flow. Dashed curves show the undulations
welling and an additional negative buoyancy associated with the
ransition (Schubert et al., 1975).
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comparison of the time-averaged vertical temperature profiles

for three different cases: one without the post-perovskite tran-

sition, the second with a Clapeyron slope of 8 MPa K�1, and

the third with a slope of 16 MPa K�1. There is an increase in the

interior temperature with increasing Clapeyron slope, with a

difference of 400 K between the reference case (no post-

perovskite) and the case with the steepest Clapeyron slope.

A more realistic model with variable viscosity would act to

decrease the temperature difference because of negative buffer-

ing feedback from temperature-dependent viscosity (Tozer,

1972). The enhanced time dependence of boundary layer

instabilities induced by the presence of the post-perovskite

transition can be reduced by an increase of thermal conductiv-

ity with depth and a decrease of thermal expansivity with

pressure (Matyska and Yuen, 2005; Tosi et al., 2010). In fact,

increased radiative thermal conductivity can help to stabilize

the chaotic situation in the D00 layer caused by exothermic post-

perovskite transition (Matyska and Yuen, 2005).

The interaction of a cold descending slab with the D00 layer
has always been an important dynamical problem. The piling

up of slab material at the base of the mantle could play a role in

the Earth’s evolution. This topic becomes even more complex

in the presence of post-perovskite. The possibility of slab mate-

rial folding and piling at the base of the mantle and undergo-

ing post-perovskite transition has been proposed by Hutko

et al. (2006) based on strong lateral variations in seismic pro-

files. Lens-shaped post-perovskite structures, inferred from

seismic imaging with ScS data (van der Hilst et al., 2007),

have further attracted the attention of geodynamic modelers.

Closely related issues of the seismologically observed complex-

ity of the D00 layer include the relative effects of temperature

and chemistry on the depth to and seismic visibility of the

phase change and the distortion of the phase boundary by

small-scale mantle convection.

Nakagawa and Tackley (2005, 2006) had carried out a

series of models incorporating melting-induced chemical
differentiation, platelike behavior, multiple phase transitions,

and compressibility to focus on the interaction of slabs and the

D00 layer for models with horizontal wavelengths longer than

about 65 km. van den Berg et al. (2010a,b) had performed a

combined geodynamic and seismological investigation for

scale lengths as small as 4 km, including the presence of sub-

ducted MORB. They evaluated the seismic imaging manifesta-

tion of the heterogeneous distribution of mineral phase and

composition in the model by subjecting the finite-element

modeling results to a decomposition into wave packets

(Duchkhov et al., 2010). The spatial scales and orientations

(i.e., dips) are restricted to those that can be resolved by ScS

imaging of large global network datasets (van der Hilst et al.,

2007; Wang et al., 2006). The short-scale resolution is derived

from a matrix representation of the generalized Radon trans-

form, by exploiting the concentration of wave packets, and this

approach opens new pathways for joint seismic and

geodynamic analysis of a local region.

We show in Figure 18 a zoom-in on the shear velocity

variations of a post-perovskite lens structure of about

2000 km (top row), together with wave-packet decomposi-

tions at three different length scales. The wave speeds shown

correspond to snapshots taken from thermal–chemical convec-

tion, the results having been converted from geodynamic out-

put to seismic expressions by using mineral physics properties.

Three different scales k¼4–6, corresponding to length

scales of around 12 km, are considered in this figure. The

three bottom rows show results of an analysis zoomed in at

the top of the post-perovskite lenses, displaying clearly the

visibility of the corrugated top of the post-perovskite layer

and a thicker bottom post-perovskite layer. A Clapeyron

slope of 6 MPa K�1 is used in the simulation.

There is accumulating evidence that a strong viscosity con-

trast exists between perovskite and post-perovskite phases,

with theoretical studies proposing a lower viscosity for post-

perovskite (Ammann et al., 2010; Hunt et al., 2009). This is
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supported by earlier inversions of intermediate-wavelength

geoid anomalies and recent work based on the Earth’s short-

term rotational fluctuations (Cadek and Fleitout, 2006;

Nakada and Karato, 2012; Tosi et al., 2009). Investigations

focusing on this perovskite/post-perovskite rheological differ-

ence have found that the post-perovskite rheology can exert a

noticeable influence on lower mantle dynamics and thermal

evolution (Cizkova et al., 2010; Nakagawa and Tackley, 2011;

Tosi et al., 2010), significantly amplifying the effects for post-

perovskite assumed to have the same viscosity as perovskite.

Samuel and Tosi (2012) found that the presence of weak

post-perovskite enhances heat transfer across the bottom ther-

mal boundary layer, thus producing higher temperatures,

reducing viscosities, and giving rise to considerably larger con-

vective velocities. Small-scale fast convection is induced within

the D00 layer and enhances local mixing. Figure 19 shows the

surface Nusselt number, which corresponds to the averaged

surface heat flow and root-mean-squared velocity as a function

of time for four different viscosity contrasts, ranging from ten

times greater viscosity for post-perovskite to 0.01 lower viscos-

ity for post-perovskite. There is a sharp reduction of the time

scales when post-perovskite viscosity is decreased and a corre-

spondingly rapid increase in the mean velocity. Mixing time

was found to decrease dramatically with a 0.01 post-perovskite

to perovskite viscosity ratio (Samuel and Tosi, 2012). With the

development of post-perovskite in the secularly cooling deep

mantle, the surface heat flow would increase dramatically that

might cause a mantle overturn at 2.6 Byr ago (Breuer et al.,

1996), manifested in a series of geologic and geobiological

signatures (Maruyama et al., 2007). The time for the appear-

ance of post-perovskite in the deep mantle is still uncertain but
remains an important question in mantle evolution, especially

in view of recent paper on the melting curve of pyrolite

(Nomura et al., 2014), which found a lower melting tempera-

ture than previous results for pure MgSiO3 minerals.

Mantle convection can be viewed dynamically as a non-

linear system (Bohr et al., 1998) because many thermody-

namic parameters and transport properties such as thermal

conductivity and viscosity depend sensitively on both temper-

ature T and pressure P. The evolution of the Earth’s mantle and

core depends sensitively on the interactions among the various

input parameters, such as the material properties and the time-

varying boundary conditions. Figure 20 shows a comparison

of the dynamical time scales for the three different models,

ranging from constant thermodynamic and thermal transport

properties to variable thermodynamic parameters and thermal

conductivity. The last case has a post-perovskite transition but

with post-perovskite having the same viscosity as perovskite.

Much faster time scales are present with constant properties,

and the influences of variable thermal expansivity and the

greater post-perovskite thermal conductivity are to greatly slow

down the dynamics. In order to estimate the viscosity of the

lower mantle from slab remnants inferred from seismic tomog-

raphy (e.g., Li and Yuen, 2014; van der Meer et al., 2010), it is

important to consider all physical parameters, such as thermal

expansivity, conductivity, and chemical heterogeneities.

Figure 21 from Tosi et al. (2013) displays a comparison of

the temperature fields for five different models. We show rep-

resentative snapshots of selected simulations that were run

until they reached a statistical steady state and the panels

feature constant thermal expansivity a and conductivity k

(Figure 21(a)), variable a and constant k (Figure 21(b)),
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constant a and variable k (Figure 21(c) and 21(d)), and vari-

able a and k (Figure 21(d) and 21(g)). Figure 21 shows

temperature perturbations from the laterally averaged temper-

ature profile. From Figure 21, it is quite evident that the

influence of variable expansivity and conductivity on mantle

convection is dramatic. When both parameters are held con-

stant, the temperature field shows the character prevalent for

convection at relatively high Rayleigh numbers with internal

heating. The flow is dominated by cold downwellings, which,

despite the viscosity jump between upper and lower mantle,

sink straight to the CMB and accumulate there, cooling the

deepest part of the mantle and producing the locally elevated

post-perovskite lenses. Because of the limited temperature

jump across the bottom thermal boundary layer, hot upwell-

ings are generally weak and short-lived. In the presence of

variable thermal conductivity, the mantle temperature

increases sufficiently for plumes to be suppressed and post-

perovskite forms only at places where cool downwellings reach

the deep mantle. The distribution of thermal conductivity is

dominated by pressure effects except in the core of cold slabs

where it attains its highest values when temperature depen-

dence is included. We emphasize here that despite their high

conductivity, slabs do not heat up efficiently via conduction

since they sink very rapidly because of the generally low vis-

cosity of the surrounding hot mantle. The rapid sinking
increases surface plate velocities. Using constant properties or

just variable expansivity, plate velocities are in the range of a

few cm a�1 or a fraction of cm a�1, respectively. With variable

conductivity, they can become up to one order of magnitude

larger (e.g., the peak surface velocity associated with the slab of

Figure 21(f ) is around 30 cm a�1). The differences between

models featuring P-dependent and P- and T-dependent k are

minor, both qualitatively (compare Figure 21(c) and 21(d))

and quantitatively. In terms of temperature distribution, the

largest differences are attained in the lower mantle and amount

to 0.02 (74 K).

When both variable a and k are considered together

(Figure 21(d) and 21(g)), we find another convective regime.

Because of the temperature increase caused by the elevated

thermal conductivity at depth and the modified buoyancy

properties induced by variations of thermal expansivity, both

up- and downwellings assume equal importance. In particular,

whether we use either A or B models, convection shows an

increased propensity toward local layering, with slabs that are

often trapped in the transition zone before sinking into the

lower mantle where the associated cold thermal anomaly also

tends to broaden. Occasionally, slab detachment caused by a

period of prolonged stagnation can also be observed, as shown

in Figure 21(g). Furthermore, the slowing effect exerted by

variable expansivity helps to reduce high surface velocities to

more realistic plate values from �4 to 5 cm a�1.

Self-consistent mineral physics within a thermodynamic

framework (Connolly, 2005) has been employed by

Nakagawa et al. (2010, 2012) to study the influence of oceanic

crust on thermal–chemical mantle convection with post-

perovskite transition. Models were originally run for 3D geom-

etry (Nakagawa et al., 2010), but to obtain proper resolution, a

more modest spherical annulus geometry (Nakagawa et al.,

2012) was employed in order to resolve the CMB region at

10 km radial resolution and has 30 tracers per cell to track

accurately the composition and melt fraction. In Figure 22,

we show their results for temperature, composition, and seis-

mic perturbations in bulk sound velocity and shear waves at a

time of 4.5 Gyr from the beginning and for bulk composition

of MORB and harzburgite and pyrolite taken from Ringwood

(1985). We can see that the cold subducted slabs are deformed

greatly in the deep mantle and have a tendency to produce

folded structures above the CMB (Hutko et al., 2006). The

basaltic crust is separated from subducted slabs above the

CMB and then piles up to form large-scale compositionally

distinct structures. Upwelling plumes are observed to rise

from the edge of the basaltic piles or between the pooled

cold regions. In the shear velocity field, post-perovskite

increases the velocity contrast between the piles and the cold

pool between the piles. On the other hand, post-perovskite

reverses the sign of the bulk sound velocity contrast, making

the cold region slower than the piles. This causes the correla-

tion between the shear and bulk sound velocities to be small or

negative in the bottom part of the mantle and positive above

this region. These results indicate that both mineral physics

together with geodynamics must be employed together to

unravel the complicated structures in the D00 layer, which

come from the dynamics of the slab interacting with the D00

layer and the delicate balance among thermal, phase, and

compositional influences on seismic structure.
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2.05.5.2 Heat Flux Constraints

Assuming that the D00 seismic discontinuity is a manifestation

of the post-perovskite phase transition, temperature in the

lowermost mantle can be estimated from the phase diagram

for an assumed composition and mineral assemblage. More-

over, a shear-wave velocity reduction observed below the D00

discontinuity may be caused by back-transformation from

post-perovskite to perovskite due to rapid increase in temper-

ature in the thermal boundary layer above the CMB. This

‘double-crossing’ scenario (the lowermost mantle geotherm

intersects the phase boundary twice) was originally proposed

by Hernlund et al. (2005) and can be used to constrain the

temperature gradient in D00 and, for a given choice of thermal

conductivity, the associated heat flow (e.g., Hernlund et al.,

2005; Lay et al., 2006; van der Hilst et al., 2007).

Nomura et al. (2014) had found that the solidus tempera-

ture of pyrolite can be some five hundred degrees lower than

the melting temperature for perovskite mineral (Boehler,

1996). This result has important implications for the amount

of post-perovskite in the lower mantle and the amount of

coverage of post-perovskite over the global CMB surface.

Figure 23 displays the coverage of post-perovskite (gray color)

over the CMB surface. This snapshot was taken from numerical

simulations in 3D spherical convection using very high-

resolution and statistical techniques for quantifying the rela-

tionships of depths of double-crossings of the post-perovskite

transition developed in 3D convection (Monnereau and Yuen,

2010). The global coverage over the CMB surface by post-

perovskite today is an important factor in the overall heat flux

as a function of mantle evolution and should be a probed
Figure 23 Snapshot of 3D spherical convection showing the coverage
of post-perovskite (gray color) over the core–mantle boundary surface.
Blue and orange colors denote cold and hot material, respectively.
Calculations are taken from Monnereau and Yuen (2007, 2010),
in which both thermal conductivity and thermal expansivity are
depth-dependent. The viscosity is depth-dependent with a jump at
670 km depth. Three mantle phase transitions are included.
with detailed seismic arrays because from the estimate of this

quantity, we can derive better constraint on the timing of

post-perovskite appearance in the lower mantle.
2.05.5.3 Dynamical Effects of Post-Perovskite in Other
Planets

The interiors of exosolar planets (Marcy and Butler, 1995)

represent a new fertile field for planetary scientists and astron-

omers to research together. Most such planets found up to now

are much larger than the Earth, typically the size of Jupiter. But

recently, several planets, dubbed super-Earths, have been

detected near the star Gliese 876, with estimates of about

seven Earth masses. A nearby star Gliese 581 hosts several

more of these large planets, with some being rocky. Themantles

of these rocky planetary interiors represent a frontier area for

mineral physics and dynamical modelers, as post-perovskite

will play an important role. The mineralogy of super-Earth

interiors will undergo additional structural changes at extreme

(TPa) pressures (Coppari et al., 2013; Umemoto et al., 2006b).

Geodynamicists have begun to model the mantle dynamics of

exosolar planets (O’Neill and Lenardic, 2007; Tackley et al.,

2013; Valencia et al., 2007a,b,c) but very few have included

the influences of phase transitions, in particular the perovskite-

to-post-perovskite transition and the higher pressure decompo-

sition of post-perovskite (Umemoto et al., 2006b).

van den Berg et al. (2010b) modeled the time-dependent

dynamics of exosolar planets within the framework of a two-

dimensional Cartesian model and the extended Boussinesq

approximation and included the post-perovskite transition

and its deeper decomposition to the oxides (Umemoto et al.,

2006a). The mass of the super-Earth models considered is eight

times the Earth’s mass and the thickness of the mantle is

4,700 km. The effects of depth-dependent properties have

been considered for the thermal expansion coefficient, the

viscosity, and thermal conductivity. The viscosity and thermal

conductivity are also temperature-dependent. The thermal

conductivity has contributions from phonons, photons, and

electrons. The last dependence comes from the bandgap nature

of the material under high pressure and increases exponentially

with temperature and kicks in at temperatures above 5,000 K.

The thermal expansivity decreases by a factor of 20 across the

mantle because of the high pressure, greater than 1 TPa. They

considered three phase transitions: the spinel to perovskite, the

post-perovskite, and the post–post-perovskite decomposition

in the deep lower mantle, for which the Clapeyron slope is

strongly negative �18 MPa K�1 (Umemoto et al, 2006a),

inducing layered convection in the deep portion of the

exoplanet.

Their results show that because of the multiple phase tran-

sitions and strongly depth-dependent properties, particularly

the thermal expansion coefficient, most of the planetary inte-

rior is strongly superadiabatic initially in spite of a high surface

Rayleigh number, because of the presence of partially layered

and penetrative convective flows throughout the mantle,

unlike convection in the Earth’s mantle. This period of super-

adiabaticity can last a very long time, more than a couple of Ga.

An outstanding influence of electronic thermal conductivity is

to heat up the bottom boundary layer quasi-periodically, giv-

ing rise to strong coherent superplumes, which can punch their

way to the upper mantle and break up the layered convective



Mineralogy of the Deep Mantle – The Post-Perovskite Phase and its Geophysical Significance 109
pattern and may give rise to planetary-scale super volcanism.

Figure 24 displays representative snapshots of the temperature

field and corresponding stream functions for three model cases

all with the negative Clapeyron slope, with the same tempera-

ture contrast DT¼10000 K.

The only difference in the models is the thermal conductiv-

ity, with models A and B having constant conductivity, while

model C has contributions from phonons, photons, and elec-

trons. The last component has an exponential dependence in T.

The different degree in the style of layered convection near the

bottom post–post-perovskite decomposition boundary can be

clearly discerned in these frames, in particular in the distribution

and spacing of the contour lines in the stream function. Model

A with a decrease factor of thermal expansivity across the mantle

of 0.1 shows limited interaction between the endothermic phase

boundaries, with hot plumes crossing the phase boundary in

several locations. The middle row of snapshots for model B with

thermal expansivity contrast of 0.05 illustrates that a penetrative

convective flow regime in the stream function with flow fields

concentrated in the top half of the mantle and the bottom

circulation is driven by the convection cells in the shallow

mantle. As in the A model, the flow is driven by the cold down-

wellings. The temperature snapshots reveal an increased layering

at the post–post-perovskite boundary at the bottom, as indi-

cated by the mushroom-shaped plumes, which show only lim-

ited penetration of the deepest phase boundary. The increase in

layering between models A and B is related to the smaller value

of the thermal expansivity near the bottom post-perovskite

decomposition resulting in a higher effective phase buoyancy

parameter that scales inversely with respect to thermal
t = 3.1020 Gyr

1.00.0
(a)

(b)

(c) t = 1.2408 Gyr

t = 1.0857 Gyr

DT = 10 00

Figure 24 Temperature and stream functions associated high-resolution tw
models have been considered in these time-dependent runs (van den Berg et
with a mass eight times that of the Earth has been assumed. Decomposition
2006a) has been employed with a strong negative Clapeyron slope of �18 M
phonons, photons, and electrons. Rheology is only temperature-dependent w
expansion coefficient (Christensen and Yuen, 1985). A similar

type of layered penetrative convection was observed in Breuer

et al. (1997) in a model for the Martian mantle.

In contrast to the constant thermal conductivity models,

model C has a variable thermal conductivity k(T,P) model with

a strong contribution from electron thermal conductivity kel
near the bottom of the mantle, where temperatures are in

excess of 5,000 K. The high conductivity at the base of the

mantle results in an increased heat flow into the bottom

post-perovskite decomposition layer, producing episodic

occurrence of massive mantle plumes that break through the

phase boundary, as illustrated by the hot plume near the

middle of the temperature frame and corresponding high ver-

tical velocity shown by the very narrow spacing in the stream

functions. These events may trigger volcanism on the surface of

exoplanets, which may be detectable someday by space tele-

scope (Kaltenegger et al., 2011). We depict this scenario in

Figure 25.

The viscosity of the post-perovskite lower mantle in exosolar

planet has attracted the attention of mantle rheologists, and

there is currently a debate between computational mineral phys-

icists (Ammann et al., 2010), who argued from dislocation

theory and experimental rheologists (Karato, 2011, 2013),

who relied on ideas from diffusion of vacancies. Ito and

Toriumi (2007) had shown from large-scale MD simulations

of MgO that a viscosity maximum can be found under high

enough pressure. Using high-resolution boundary-element

method simulations, Morra et al. (2010) had found that pulsat-

ing plumes can also be developed by a Rayleigh–Taylor type of

instability from these types of viscosity ‘hills’ in the Earth’s
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Figure 25 Possible future scenario of space telescopic detection of
volcanic gas (Kaltenegger et al., 2011) coming from pulsating plumes in
exosolar planets due to the interaction (Morra et al., 2010) between an
upwelling and a viscosity hill predicted by the work of Ito and Toriumi
(2007) and Karato (2011, 2013).
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mantle. Karato (2011, 2013) had developed a new idea of

viscosity maximum in the post-perovskite mantle, which is

followed below by a low-viscosity deep mantle in large exosolar

planets. The style of exoplanetary convection between the two

rheological models (Ammann et al., 2010; Karato, 2011) may

be tested by searching for spectral fingerprints from emitted

volcanic gases (see Figure 24), where we would expect to more

volcanic gases to be emitted by the plume pulsation model.
2.05.5 Conclusions

The extensive investigations of the post-perovskite phase

described here represent a major advance in our understanding

of deep mantle mineralogy, transport properties, and dynam-

ics. Given the predominance of silicate perovskite in the lower

mantle, the importance of discovery and characterization of

post-perovskite brought multidisciplinary focus on this new

phase. Many questions remain about post-perovskite in the

Earth and in other planets, and the breadth of investigations

will continue for much time to come, ultimately modifying

some of the findings reported in this summary.
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Andrault D, Muñoz M, Bolfan-Casanova N, et al. (2010) Experimental evidence for
perovskite and post-perovskite coexistence throughout the whole D00 region. Earth
and Planetary Science Letters 293: 90–96.

Badro J, Fiquet G, Guyot F, et al. (2003) Iron partitioning in Earth’s mantle: Toward a
deep lower mantle discontinuity. Science 300: 789–791.
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