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2.15.1 Introduction

The purpose of this chapter is to provide some examples about

recent developments in the calculation of the high-pressure

and high-temperature properties of materials using ab initio-

based techniques, with the description limited to minerals

under the relatively benign conditions of the center of the

Earth. This chapter is not intended to review comprehensively

all high-pressure and high-temperature ab initio calculations

on minerals performed to date nor has the presumption to

include the most significant ones. The few examples provided

will only serve the purpose of showing what current ab initio

techniques are capable of predicting.

With the word ‘ab initio,’ I refer here to those calculations

based on the very basic laws of nature, in which no empirical

adjustable parameter is used. Only fundamental constants of

physics are allowed. Specifically, since we will be interested

in the properties of matter, the relevant basic laws of physics

are those describing the interactions between nuclei and elec-

trons, that is, those of quantum mechanics. We shall see that
atise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-538
approximations to exact quantum mechanics are necessary to

provide tools that can be used in practice; however, as long

as these approximations do not involve the introduction of

empirical parameters, we will still regard those techniques as

ab initio.

I start the discussion by recalling the structure of the Earth,

which can be broadly described in terms of three main shells.

The outermost is the crust, with a thickness of only a few tens of

kilometers, mainly formed by silicates. Below the crust, we find

the mantle, which is customarily divided in an upper mantle

and a lower mantle, separated by a transition zone. The mantle

makes up most of the volume of the Earth, extending to a

depth of 2891 km, almost halfway toward the center, and

like the crust is alsomainly formed by silicates and in particular

by Mg(Fe)SiO3 with some significant fraction of Mg(Fe)O and

SiO2. Below the mantle, we find the core, which is divided into

an outer liquid core extending from 2891 to 5150 km depths

and an inner solid core below that, down to the center of the

Earth at 6346 km depth. It is widely accepted that the core is

mainly formed by iron, possibly with some 5–10% of nickel,
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plus a fraction of unknown light impurities, which reduce the

density by 2–3% in the solid and 6–7% in the liquid with

respect to the density of pure iron under the same pressure–

temperature conditions.

Studying the high-pressure and high-temperature proper-

ties of the core- and mantle-forming materials is of fundamen-

tal importance to the understanding of the formation and

evolution of our planet. In particular, knowledge of the ther-

mal structure of the Earth and the thermoelastic properties of

Earth-forming minerals will help us interpret and hopefully

predict the behavior of the dynamic processes, which happen

inside our planet, including the generation of the Earth’s mag-

netic field through the geodynamo, and the convective pro-

cesses in the mantle, which are ultimately responsible for plate

tectonics, earthquakes, and volcanic eruptions.

The development of theoretical methods based on the very

basic laws of nature of quantum mechanics (developed almost

90 years ago), coupled with the recent staggering increase

of computer power (�500-fold in the past 10 years), has

made it possible to approach the problem from a theoretical–

computational point of view. When high-level first-principles

methods are used, the results are often comparable in quality

with experiments, sometimes even providing information in

regions of the pressure–temperature space unaccessible to

experiments.

The exact quantum mechanical treatment of a system con-

taining a large number of atoms is a formidable task. The

starting point of nearly every quantum mechanical calculation

available is the so-called adiabatic approximation, which

exploits the large difference of mass between the nuclei and

the electrons. Since the electrons are much lighter, they move

so much faster that on the timescale of their movement, the

nuclei can be considered as fixed. Therefore, one solves only

the electronic problem in which the nuclei are fixed and act

as an external potential for the electrons. The energy of the

electrons, plus the Coulomb repulsion of the nuclei, is there-

fore a function of the position of the nuclei and can act as a

potential energy for the nuclei. This can be mapped in config-

uration space to create a potential energy surface, which can

later be used to study the motion of the nuclei. Alternatively,

forces can be calculated as the derivatives of the potential

energy with respect to the position of the nuclei, and these

can be used to move the atoms around, relax the system, solve

Newton’s equations of motion and perform molecular

dynamics (MD) simulations, or calculate harmonic vibrational

properties like phonons. The potential energy can also be

differentiated with respect to the simulation cell parameters,

which provides information on the stress tensor. The solution

of the electronic problem also provides insights into the elec-

tronic structure of the system, which can be examined to study

physical properties like bonding, charge distributions, mag-

netic densities, and polarizabilities.

Most first-principles studies of the high-pressure and high-

temperature properties of Earth-formingmaterials are based on

the implementation of quantum mechanics known as density

functional theory (DFT). This is a technique that was intro-

duced about 50 years ago by Hohenberg and Kohn (HK)

(1964) and Kohn and Sham (KS) (1965) in an attempt

to simplify the calculation of the ground-state properties

of materials (in fact, later shown to be useful also for
finite-temperature properties; Mermin, 1965). The basic HK

idea was to substitute the cumbersome many-body wave func-

tion of a system containing N particles, which is a function of

3N variables, with the particle density, which is only a function

of three variables. The price to pay for this enormous simplifi-

cation is a modification of the basic equations of quantum

mechanics with the introduction of new terms, one of which,

called exchange-correlation (XC) energy, is unfortunately

unknown. However, KS proposed a simple form for the XC

functional, known as the local density approximation (LDA)

(Kohn and Sham, 1965), that would prove later as the insight

that has made DFT so successful and so widespread today.

More sophisticated XC functionals were developed in the fol-

lowing decades and are still being developed today, making

DFT an evolving technique with increasingly higher accuracy.

One additional attractive feature of DFT is the favorable scaling

of computational effort with the size of the system. Traditional

DFT techniques scale asN3, whereN is the number of electrons

in the system, but large effort is being put into the so-called

o(N) techniques, which for some materials already provide a

scaling that is only directly proportional to the size of the

system (Bowler et al., 2002; Soler et al., 2002).

A wide range of properties of minerals have been predicted

using DFT techniques, like structural and electronic properties,

phase diagrams, thermoelastic properties, speed of sound,

transport properties, melting, solutions, and partitioning. In

this chapter, we will focus only on a very limited number of

applications.

The limitations in accuracy due to the current state of the art

of DFT are expected to be progressively removed, either

through the formulation of new XC functionals or with the

developments of alternative techniques. Among these,

dynamic mean field theory (Savrasov and Kotliar, 2003) and

quantum Monte Carlo (QMC) (Foulkes et al., 2001) are prob-

ably the most promising on a timescale of 5–10 years.

After this introduction, the chapter is divided into twomain

sections. In the first, I will briefly review the main ideas behind

first-principles simulations and in particular DFT and the

pseudopotential (PP) approximation. I will also mention

QMC techniques as promising advances beyond DFT.

Section 2.15.3 will deal with the properties of materials, first

at zero temperature and then at finite temperature. Techniques

for the calculation of free energies will be presented, and this

will be done by separating the low-temperature regime, where

solids can be described within the quasi-harmonic approxima-

tion, from the high-temperature regime, where the technique

of thermodynamics integration is introduced to calculate free

energies. The calculation of melting curves and the thermody-

namics of solutions will be presented as applications of these

techniques. The final section includes recent calculations of the

electrical and thermal conductivities of iron and iron alloys at

the Earth’s core conditions.
2.15.2 First-Principles Techniques

I begin this section by recalling the basic equation of quantum

mechanics, the Schr€odinger equation, which in the time-

independent form is
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ĤC¼ EC [1]

where Ĥ is the Hamiltonian of the system, E the total energy,

andC themany-body wave function, which is a function of the

coordinates of the M nuclei {Ri} and the N electrons
{ri}:C¼C(R1,R2, . . .,RM; r1, r2, . . ., rN). If the system is iso-

lated, in the nonrelativistic approximation, the Hamiltonian

is given by
Ĥ R1, R2, . . . , RM; r1, r2, . . . , rNð Þ¼�
XM
i¼1

ℏ2

2Mi
r2

Ri
�
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[2]
where the first two terms are the kinetic energy operators for

the nuclei and the electrons, respectively, with ℏ the Planck’s

constant h divided by 2p andMi andm the masses of the nuclei

and the electrons, respectively. The third and the fourth terms

in the equation represent the Coulomb repulsive energies

between the nuclei and between the electrons, respectively,

with Zi the charges of the nuclei in units of e, the charge of

the electron, and e0 the dielectric constant of the vacuum. The

last term of the equation represents the electrostatic interaction

between the electrons and the nuclei.

The only experimental input in the Schr€odinger equation in

the nonrelativistic approximation is the four fundamental

constants: the Plank’s constant h, the charge of the electron e,

the mass of the electron m, and the dielectric constant of the

vacuum e0, which are the same for every system, plus the mass

of the nuclei.

As mentioned in Section 2.15.1, solving the Schr€odinger

equation is essentially impossible for any real system more

complicated than the hydrogen atom or more generally any

system, which contains three or more quantum particles, and

therefore, approximations are needed to make the problem

manageable. The first approximation, which can be brought

in, is the Born–Oppenheimer approximation, also called the

adiabatic approximation. Here, one recognizes that the

masses of the nuclei Mi are much larger than the mass of the

electron m (the lightest possible atom is the hydrogen atom,

which is almost 2000 times heavier than the electron), which

therefore move on a much faster timescale. This means that,

without much loss of accuracy for most systems, one can

separate the electronic problem from that of the nuclei or in

other words solve the Schr€odinger equation for the electrons

only, with the nuclei positions kept fixed. Therefore, we can

rewrite eqn [1] as

Ĥ r1, r2, . . . , rM; Rif gð ÞC r1, r2, . . . , rM; Rif gð Þ
¼ E Rif gC r1, r2, . . . , rM; Rif gð Þ [3]

where now the Hamiltonian depends only parametrically from

the positions of the nuclei {Ri}, and so do the wave functionC
and the energy E. Once eqn [3] is solved, the energy E{Ri} can

be interpreted as a potential energy for the motion of nuclei. At

high temperature (above the Debye temperature), the quan-

tum nature of the nuclei becomes negligible, and with essen-

tially no loss of accuracy, one can treat their motion as they

were classical particles. This allows to perform MD simula-

tions, in which the Newton equations of motion for the nuclei

are solved using the quantum mechanical forces evaluated

from the derivative of E{Ri} with respect to the positions

{Ri}. If the quantum nature of the nuclei is important (e.g.,

hydrogen), this can be described using path integral techniques
(Feynman, 1948; a very clear description of path integral

methods can be found in Gillan (1990)).
2.15.2.1 Density Functional Theory

The introduction of DFT in 1964 by Hohenberg and Kohn

(1964) tackled the many-body problem using a completely

new approach. I will briefly outline here the main ideas of

DFT; for an in-depth description of DFT, the reader may consult

the original papers or the excellent books by Parr and Wang

(1989) or Dreizler and Gross (1990) or the recent book by

Martin (2004). A simplified (almost) nonmathematical expla-

nation of DFT has been given by Gillan (1997).

Hohenberg and Kohn (1964) proved that the external poten-

tial Vext acting on the electrons is uniquely determined (up to a

trivial additive constant) by the electron ground-state density

n rð Þ¼ C n̂ rð Þj jCh i¼
ð
dr2, . . . ,drN C r, r2, . . . , rNð Þj j

2

, where C is

the ground-state wave function of the system and n̂ rð Þ is the

density operator. Here, we have omitted the dependence of C
from the positions of the nuclei for simplicity. Since n(r) deter-

mines also the number of electronsN and sinceVext andN fix the

Hamiltonian of the system, it turns out that the electron density

completely determines all the electronic ground-state properties

of the system and in fact, as shown later byMermin (1965), also

the finite-temperature properties.

One important property of the system is the energy, which

can be written as

E n½ � ¼ FHK n½ �+
ð
Vext rð Þn rð Þdr [4]

with

FHK n½ � ¼ C n½ � T̂ + V̂ee

�� ��C n½ �� �
[5]

where T̂ and V̂ee are, respectively, the kinetic energy and the

electron–electron interaction operators and C[n] is the

ground-state wave function of the system. Note that FHK [n]

does not depend on the external potential and therefore it is a

universal functional. This is the crucial result of DFT. Using the

variational principle, HK also proved that the ground-state

density of the system is the one that minimizes E[n] and the

minimum of E[n] is equal to the ground-state energy E0. The

importance of these two results is clear; the only quantity that

is needed is the electron density, no matter how many elec-

trons are present in the system.

One year after the publication of the HK paper, KS invented

an indirect method to solve the problem (Kohn and Sham,

1965). The idea is to write the energy functional as an easy part

plus a difficult part:
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F n½ � ¼ T0 n½ �+ EH n½ � +Exc n½ � [6]

where T0[n] is the ground-state kinetic energy of an auxiliary

noninteracting system whose density is the same as the one of

the real system, EH [n] is the repulsive electrostatic energy of the

classical charge distribution n(r), and Exc[n] is the XC energy

defined through eqn [6].

Minimizing the total energy E[n] under the constraints of

orthonormality for the one-particle orbitals of the auxiliary

system,
Ð
ci*(r)cj(r)dr¼dij, one finds a set of one-particle

Schrodinger-like equations:

� ℏ2

2m
r2 +VKS rð Þ

� �
ci rð Þ¼ eici rð Þ [7]

where the KS potential is

VKS rð Þ¼Vext rð Þ +
ð
n r0ð Þ
r� r0j jdr

0 +Vxc rð Þ; Vxc rð Þ¼ dExc n½ �
dn rð Þ [8]

and

n rð Þ¼
X
i

f ei� eFð Þ ci rð Þj j2 [9]

with f(x) being the Fermi–Dirac distribution and eF the Fermi

energy fixed by the conditionð
n rð Þdr¼N [10]

These are the famous KS equations; they must be solved

self-consistently because VKS is a functional of the orbitals

itself. The generalization to finite temperature is obtained by

replacing E with the electronic free energy U¼E�TS, where S

is the electronic entropy, given by the independent-electron

formula S¼�2kBT
P

i[fi ln fi+(1� fi)ln(1� fi)] with fi being

the thermal (Fermi–Dirac) occupation number of orbital i.

It is tempting to identify the single-particle eigenvalues ei
with the energy of quasiparticles and therefore their distribu-

tion with the electronic density of states of the system. This

would be conceptually wrong, as the KS eigenvalues are only

an artificial mathematical tool to arrive at the ground-state

density of the system. Nevertheless, it turns out that these

DFT density of states often resemble very accurately the real

density of states of systems, and they are therefore often used to

analyze their electronic structure. However, it is important to

remember that even if the exact XC functional Exc[n] were

known, one should not expect the DFT density of states to be

an exact representation of the real density of states of the

system.

When self-consistency is achieved, the electronic free energy

of the system is

U¼
XN
i¼1

f ei� eFð Þei�1

2

ð
n rð Þn r0ð Þ
r� r0j j dr + Exc n½ �

�
ð
Vxc rð Þn rð Þdr + Eion�TS [11]

where Eion is the ionic electrostatic repulsion term. This would

be the exact electronic free energy of the system if we knew

Exc[n] (which also depends on temperature, though very little

is known about this dependence). Unfortunately, the exact

form of the XC (free) energy is not (yet) known.
2.15.2.1.1 Exchange correlation functionals
Kohn and Sham (1965) also provided an approximate expres-

sion for the XC functional, called the LDA. In the LDA, the

dependence of functional on the density has the form

ELDA
xc n½ � ¼

ð
n rð Þexc n rð Þð Þdr [12]

and exc(n) is taken to be the XC energy per particle of a uniform

electron gas whose density is n(r). This has been accurately

calculated using Monte Carlo simulations (Ceperley and Alder,

1980) and parameterized in order to be given in an analytic

form (Perdew and Zunger, 1981).

By construction, this approximation yields exact results if

the density of the system is uniform and should not be very

accurate for those systems whose density is highly dis-

homogeneous, for example, atoms and molecules. However,

it turns out to work better than expected for a wide range of

materials. In molecules, for example, the LDA usually over-

estimates the binding energies, but it yields in general good

results for equilibrium distances and vibrational frequencies. It

was the evidence of the very high quality of the LDA that has

been the main responsible for the tremendous success of DFT.

Nowadays, a number of sophisticated functionals, like the

so-called generalized gradient approximation (GGA) (e.g.,

Wang and Perdew, 1991) or the recently developed metaGGA

(Staroverov et al., 2004; Tao et al., 2003), and hybrid func-

tionals that contain a certain fraction of exact exchange accord-

ing to various recipes (e.g., the B3LYP functional; Becke, 1993)

have become available, but it is not obvious which one to

prefer in general, with the good old LDA itself being compet-

itive in accuracy in a variety of cases. It is also worth mention-

ing that, when used in combination with plane-waves methods

(see Section 2.15.2.1.2), XC hybrid functionals usually require

a computational effort that is orders of magnitudes higher than

what is required by local XC functionals like the LDA or the

GGAs. One of the main problems often ascribed to DFT is that

it is difficult to incorporate dispersion interactions. Significant

effort has been put in the last few years to correct XC func-

tionals by adding dispersion corrections (e.g., Grimme, 2011;

Tkatchenko et al., 2010 and references therein) or by develop-

ing new nonlocal functionals, which include dispersion inter-

actions in the correlation energy (e.g., Lee et al., 2010; Klimeš

et al., 2011 and references therein).

Whatever functional is used, these types of calculations all

go under the classification of ab initio, in the sense that no

experimental input is allowed, apart from the four fundamen-

tal constants mentioned in the preceding text. Of course, it

would be desirable to have a unique functional with the high-

est possible accuracy for any system, but at the time of writing,

we are not at this stage yet.
2.15.2.1.2 PPs and basis sets
In practical cases, it is often necessary to introduce one addi-

tional approximation in order to speed up the calculations,

known as the PP approximation. In essence, this is a way to

freeze the electrons of the core of the atoms and remove them

from the calculations. The justification for doing this is that

the core electrons are so tightly bound to the nuclei that they

are essentially undisturbed by the chemical bonding, or
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Figure 1 All-electron (solid) and ultrasoft pseudo (dashed)-radial wave
functions of the 3d orbital of nickel. rc¼1.75 a.u.
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conversely, the chemistry of materials is unaffected by the

behavior of the core electrons. This implies a saving in com-

plexity and computer time, which is proportional to the num-

ber of electrons that have been frozen, but as we shall see in a

moment, the saving becomes enormous in the most widely

available computer codes, which are based on plane-wave

expansions of the single-particle KS orbitals.

In order to solve the KS equations, it is necessary to expand

the auxiliary KS orbitals in terms of some known basis func-

tions. A variety of possible choices are available. Traditional

quantum chemistry codes often use Gaussians, which are quite

well suited for very localized orbitals, and in the course of the

years, a large amount of expertise has accumulated to create

high-quality basis sets for a wide range of materials. The draw-

back of Gaussians is that the quality of the basis set depends on

the choice of the user, and transferability can be an issue when

different systems are compared. An alternative set of functions,

which are totally unbiased and systematically improvable, are

plane waves. They also have the additional advantage of adapt-

ing naturally to calculations in which periodically boundary

conditions are employed, which is a very useful set up even in

systems, which have no periodicity, in order to reduce finite

size effects. Plane-wave calculations are relatively simple, and

the evaluation of forces and stress tensor is not much more

difficult than the evaluation of the total energy. A drawback of

plane waves is that a large number of them may be needed for

describing rapidly varying functions, like the very localized

core orbitals or the valence wave functions in the core region,

which need to oscillate widely in order to be orthogonal to the

core orbitals. For this reason, plane-wave calculations are

almost always associated with the use of PPs.

The first aim of PPs is to eliminate the core electrons from

the explicit calculations because they do not participate to the

chemical properties of matter, at least until their binding

energy is much higher than the energy involved in the chemical

properties one wants to study. Hence, one freezes them around

the nuclei and redefines the system as it was formed by ions

plus valence electrons. We are left now with the problem of

dealing with the oscillations in the core region of the valence

wave functions, due to the orthogonalization to the core wave

functions. The solution to this is the introduction of a PP,

which substitutes the ionic Coulomb potential in such a way

that the valence pseudoeigenvalues are the same as the all-

electron (AE) ones on some reference configuration in the

atom. The pseudo-wave functions coincide with the AE from

a fixed core radius on and are as smooth as possible below the

core radius, with the only constraint to be normalized (norm-

conserving (NC) PPs). To satisfy these requirements, the PP

usually must be angular momentum-dependent, that is,

pseudo-wave functions corresponding to different angular

momenta are eigenfunctions of different potentials. However,

the long-range behavior of these different potentials must

resemble the true one, because above the core radius, the

pseudo-wave functions are identical to the AE ones. This

mean that the difference must be confined in the core region

and then the PP can be written in the following form (Bachelet

et al., 1982; Hamann et al., 1979; Kerker, 1980):

Va r, r0ð Þ ¼V loc
a rð Þd r� r0ð Þ +

Xlmax

l¼0

Va, l rð ÞPl r̂, r̂0
� �

d r� r0ð Þ [13]
where Va
loc(r) is the local long-range (spherical) part and

approaches the AE potential above a cutoff radius rc
loc, Va,l(r)

are the short-range angular momentum-dependent part, the

index a indentifies the atom, and Pl is the projector onto the

angular momentum l,

Pl r̂, r̂
0� �¼ Xl*

m¼�l

Yl,m y,fð ÞYl,m* y0,f0ð Þ [14]

with Yl,m being the spherical harmonics. The quality of the PP

depends on its transferability properties, that is, the ability to

reproduce the AE results over a wide range of electronic con-

figurations, and of course the atom in different environments.
2.15.2.1.3 Ultrasoft (Vanderbilt) PPs
The requirement of norm conservation for the pseudo-wave

functions can be a limiting factor for numerical calculations

when also the valence electrons are very localized around their

nuclei. This is a particularly serious problem for first-row ele-

ments, like carbon, and more so for nitrogen and oxygen and

for transition metals, where the d-electrons are as localized as

shallow-core states but have an extraction energy, which is not

much larger than valence energies and for this reason cannot

be excluded from the calculations. If this is the case, the utili-

zation of NC PPs requires huge PW basis sets to achieve an

acceptable accuracy. In a work published in 1990, Vanderbilt

(1990) showed that, introducing a generalized formalism, the

norm conservation constraint could be removed. In this way,

one can construct much smoother pseudo-wave functions,

with the only constraint of matching the AE at and above a

fixed core radius (see Figure 1). The price to pay for having

such smooth pseudo-wave functions is that, due to the fact that

the pseudo-wave functions are not normalized anymore, the

charge density has to be restored by adding an ‘augmentation’

part

n rð Þ¼
X
i

fi rð Þj j2 + naug rð Þ [15]

and the KS equations take the generalized form
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HKS fij i ¼ eiS fij i [16]

where S is a nonlocal overlap operator.

2.15.2.1.4 The projector augmented wave method
In 1994, Bl€ochl invented a method to reconstruct the AE wave

function inside the core region (Bl€ochl, 1994). The method,

called projected augmented wave (PAW), is closely related to

Vanderbilt’s ultrasoft pseudopotential method, as shown by

Kresse and Joubert (1999), but has been shown to be capable

of reproducing essentially the same results of AE calculations,

effectively removing the PP approximation. The PAW method

is still only available in a handful of computer codes, but as

evidences of its advantages accumulate, we believe that it will

become a standard method of DFT–PW calculations.
2.15.2.2 Beyond DFT

As the search for the ‘divine’ functional in DFT goes on, alter-

native methods to solve the many-body problem are being

developed, like the dynamic mean field theory (Savrasov and

Kotliar, 2003) and QMC (Foulkes et al., 2001). The QMC

method is particularly attractive because it adapts very well to

parallel computers. As the speed of single-processor units

approaches their physical limits, it is conceivable that the

direction of the future increase of computer power will be the

increase of the number of processors, and therefore, Monte

Carlo methods will develop naturally on these machines. At

the time of writing, the fastest computers in the world (e.g.,

Titan at Oak Ridge National Laboratory) already have more

than 0.5 million processors working in parallel. Very few

methods are capable of exploiting parallelism at this level

efficiently; QMC is one of them.

QMC methods have been amply described in reviews

(Foulkes et al., 2001), including detailed descriptions of how

to implement them in practice (Foulkes et al., 2001; Umrigar

et al., 1993). In the next section, I will briefly introduce the

method and remand the reader to these reviews for more

details.

2.15.2.2.1 QMC methods
QMCmethods encompass a number of different techniques to

solve the many-body problem of a system of N interacting

quantum particles. In what follows, we will briefly mention

the variational Monte Carlo (VMC) and the diffusion Monte

Carlo (DMC) methods.

The VMC method gives an upper bound to the exact

ground-state energy E0. Given a normalized trial wave function

CT(R), where R¼(r1,r2, . . ., rN) is a 3N-dimensional vector

representing the positions of N electrons, and denoting by Ĥ

the many-electron Hamiltonian, the variational energy

Eu � CT Ĥ
�� ��CT

� �� E0 is estimated by sampling the value of

the local energy EL Rð Þ�C�1
T Rð ÞĤCT Rð Þ with configurations

R, distributed according to the probability density CT(R)
2.

Common trial wave functions are of the Slater–Jastrow type:

CT Rð Þ¼D"D#eJ [17]

where D" and D# are Slater determinants of up-spin and down-

spin single-electron orbitals and eJ is the so-called Jastrow

factor, which is the exponential of a sum of one-body and
two-body terms (and possibly higher-order terms). The Jastrow

factor is a parameterized function of electron separation,

designed to satisfy the cusp condition, that is, to cou-

nterbalance the divergence in the potential when two electrons

become very close, with a corresponding divergence in the

kinetic energy of opposite sign. The parameters in the Jastrow

factor are varied to minimize the variance of the local energy

EL, which also results in a minimization of the local energy

itself. Several additional trial wave functions have also been

used, including a more general form of that defined in eqn [17]

in which one uses a linear combination of more than one

Slater determinant or antisymmetrized geminals (Casula and

Sorella, 2003).

Because of the variational principle, VMC results are an

upper bound of true energy, which is not available in VMC

(unless, of course, the trial wave function is the exact many-

body wave function).

The DMC method is designed to obtain the true ground-

state properties of the system. The basic idea is to compute

the evolution of the many-body wave function F by the

time-dependent Schr€odinger equation in imaginary time

�@F=@t¼ Ĥ�ET
� �

F, where ET is an energy offset. If we con-

sider only the kinetic energy in the Hamiltonian, the equation

is equivalent to a diffusion equation, which allows F to be

regarded as a probability distribution represented by a popu-

lation of diffusing walkers. The potential term in the Hamilto-

nian makes the time-dependent Schr€odinger equation in

imaginary time equivalent to a rate equation, which is associ-

ated to a birth–death process of walkers in regions of low–high

potential energy, respectively. It can be shown that, by adjust-

ing the energy offset ET appropriately, in the limit of imaginary

time going to infinity, the distribution of walkers converges to

the ground-state many-body wave function, and therefore, in

principle, the DMC scheme yields the exact ground-state

energy. However, for fermion systems, there is a fundamental

problem. This is that F changes sign as R varies, so that it can

only be treated as a probability in regions of R-space where it

does not change sign. These regions and the nodal surfaces that

define their boundaries have to be fixed by the introduction

again of some trial wave function CT. The consequence of this

is that the energy given by DMC is not the true ground-state

energy, but again an upper bound because of the constraint

that the nodal surface is that of CT. This gives rise to the so-

called fixed-node error. The form of CT is usually the same as

that used in VMC, and it is used to provide a starting point for

DMC simulations.

An important issue in QMC simulations is the representa-

tion of the single-particle orbitals that make up CT. Much as

in DFT, a number of different choices are possible, including

Gaussians, plane waves, or B-splines (Alfè and Gillan, 2004a).

The latter have the attractive feature of being intimately related

to plane waves, sharing the properties of being unbiased and

systematically improvable, but also being localized, a crucial

property in QMC simulations.

It has also been shown recently that the evaluation and

the storage of the trial wave function CT, often the most

expensive part of the calculations, can be performed such

that its cost scales linearly with the size of the system (Alfè

and Gillan, 2004b; Manten and Lüchow, 2003; Roboredo and

Williamson, 2005; Williamson et al., 2001), making the
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so-called o(N)-QMC techniques promising candidates for cal-

culations on very large systems in the future.

The fixed-node error is the only uncontrollable source of

error in DMC calculations; however, for systems containing

atoms heavier than those of the first row, it is necessary to use

PPs. The reason is that, for a trial wave function of fixed quality,

the variance of the energy is proportional to the energy itself.

Since core electrons have large negative energies, the variance

associated to the evaluation of this component of the energy

would mask completely the relatively small energies due to the

valence electrons, which are those involved in the chemical

bonding. For this reason, it is customary to use PPs also in

QMC calculations. The nonlocality that is essential in these PPs

gives rise to unavoidable errors in DMC. The reason is that the

diffusion equation with a nonlocal Hamiltonian contains a

term that can change its sign as time evolves and therefore

presents the same difficulties as the fermion sign problem. To

avoid this difficulty, one introduces the so-called localization

approximation, in which this problematic term is simply

neglected. If the trial wave function CT is close to the true

(fixed-node) ground-state wave function C, then this approx-

imation introduces an error, which is small and proportional

to (CT�C)2. This error, however, is nonvariational, so it can

decrease and increase the total energy. Some recent promising

work has gone toward addressing this problem (Casula et al.,

2005, 2010).

To summarize, provided that all sources of technical errors

are kept under control, the only two sources of error in QMC

calculations are the fixed-node approximation and the locality

approximation. It has been shown that DMC techniques can

deliver much higher accuracy than DFT techniques (Binnie

et al., 2010; Filippi et al., 2002; Grossman et al., 1995; Leung

et al., 1999; Pozzo and Alfè, 2008; Santra et al., 2011;

Tkatchenko et al., 2012), hinting that the aforementioned

two approximations are less serious than those involved in

the formulation of XC functionals in DFT calculations (at

least for the systems considered). However, DMC total energy

calculations are typically 4 orders of magnitude more expen-

sive than traditional DFT techniques, and for this reason, the

range of materials studied so far is rather limited, and

therefore, so is the evidence that would favor DMC compared

to DFT. As mentioned already in the preceding text, however,

QMC techniques adapt naturally to large parallel computers

(Towler et al., 2011), while traditional DFT techniques can take

less advantage of this kind of architecture. It is expected there-

fore that the development and application of QMC techniques

will be boosted in the future.
2.15.3 Mineral Properties and Behavior

Having introduced the computational tools, I now turn the

discussion to the main purpose of this chapter, namely, how

these tools can be applied to the study of the high-pressure and

high-temperature properties of materials. I will focus in partic-

ular on the structure and elastic properties, phase diagrams,

phase transitions, and thermodynamics of solutions.

To simulate materials under pressure is not much more

difficult than to perform calculations at zero pressure; all it

needs to be done is to change the volume of the simulation cell
appropriately. In doing so, one possible problem can be the

shortening of the nearest-neighbor distance among the atoms,

which, if it drops below the sum of the core radii of the PPs

employed (or PAW-potentials), may affect the quality of the

results. Therefore, some care is necessary in designing the

potentials appropriate for the conditions where they need to

be used. However, apart from this possible shortcoming, it is

often the case that simulations at high pressure are even more

accurate than those at low pressure. The reason is that as the

pressure increases, the charge density becomes more homoge-

neous, which helps the XC functionals in their work.

By contrast, high-temperature simulations are much more

demanding than the zero-temperature ones. The reason is that

at high temperature, it is the free energy to play the essential

role, and an accurate calculation of this requires expensive

sampling of the phase space. For solids at not too high

temperature, it is often accurate enough to use the quasi-

harmonic approximation, in which the potential energy of

the crystal is expanded to the second order in the displacement

of the atoms away from their equilibrium positions. This

quasi-harmonic potential usually provides a very accurate

description of the dynamic properties of the system at low

temperature and gives easy access to the free energy of the

system, which can be calculated analytically as a function of

temperature. The prefix ‘quasi-’ is there to indicate that this

quasi-harmonic potential depends on the volume of the sys-

tem. In practice, the quality of the thermodynamics obtained

within the quasi-harmonic approximation is often preserved

also to temperatures not far from the melting temperature,

although at such high temperatures, a full account of anhar-

monic effects becomes necessary, at least to assess the validity

of the quasi-harmonic approximation. For highly anharmonic

solids and for liquids, one has to resort to MD or Monte Carlo

techniques to sample the phase space. MD simulations are

particularly attractive because they also provide dynamic

information like diffusion or autocorrelation properties,

which can be used together with the fluctuation–dissipation

theorem to evaluate a number of physical properties of the

system, as we shall see in the succeeding text. In the next

section, we start by looking at the zero-temperature properties

of materials, and in the following section, we turn to finite

temperature.
2.15.3.1 Static Properties

2.15.3.1.1 Crystal structures and phase transitions
At zero temperature, the main thermodynamic variable is the

internal energy of the system E. The simplest possible first-

principles calculation one can do is the evaluation of the

total energy of a system containing a certain number of

atoms at fixed lattice sites. To find the most stable configura-

tion of the atoms, one simply minimizes the total energy with

respect to the atomic positions. This is usually done by evalu-

ating forces, which are then used to move the atoms toward

their equilibrium positions. For simple crystal structures, this

could not be necessary, as the positions may be constrained by

symmetry. An example of this is the Earth’s mantle mineral

MgO (periclase), which at zero pressure has a face-centered

cubic crystal structure, with the Mg and O atoms in the prim-

itive cell sitting at the corners and at the center of the
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conventional cubic cell. In Figure 2, I show a comparison of

pressures as function of volume between first-principles calcu-

lations and experiments. The calculations have been per-

formed with DFT and both the LDA and the GGA

approximations known as PW91 (Wang and Perdew, 1991)

for the XC. The GGA results appear to agree very well with the

experimental data, while the LDA one underestimates the pres-

sure slightly. However, these particular calculations do not

include zero-point motion and room temperature thermal

expansion, which are instead present in the experiments.

With those effects included (Karki et al., 2000), the experimen-

tal data would fall roughly in the middle of the two theoretical

curves.

As the pressure is increased, the crystal structure of the

material may change. For MgO, this does not happen up to at

least 227 GPa (Duffy et al., 1995), but it is believed that as the

pressure is increased still further, MgO would transform to the

structure of CsCl, which is a simple cubic with the Mg and O

atoms in the primitive cell still sitting at the corner and the

center of the cube, respectively. The pressure at which the phase

transformation occurs is defined by the point where the

enthalpies of the two crystal structures cross. These enthalpies

can be computed using ab initio techniques, by computing the

energy E and the pressure p of the crystal as function of volume

V, and then construct the enthalpy H¼E+pV. For MgO, this

has been done using a number of different techniques in the

past, including various flavors of DFT (Chang and Cohen,

1984; Drummond and Ackland, 2002; Jaffe et al., 2000; Karki

et al., 1997; Mehl et al., 1988; Oganov and Dorokupets, 2003;

Oganov et al., 2003) and, very recently, QMC (Alfè et al.,

2005). The latest DFT results point toward a transition at

around 500 GPa, and the QMC results show that the transition

is at 600�30 GPa.

Another example of phase transition between different

crystal structures is the transformation of iron from the zero-

pressure magnetic body-centered cubic (bcc) to the hexagonal

close-packed (hcp) structure at a pressure between 10 and
15 GPa ( Jephcoat et al., 1986). Like the previous MgO case,

the cubic structure is symmetrical, and it is necessary only to

evaluate the energy of the crystal as function of volume. In

contrast to bcc, however, the hep crystal structure has an addi-

tional degree of freedom, coming from the lack of a symmetry

relating the hexagonal plane and the direction perpendicular to

the plane. This additional degree of freedom, known as the c/a

ratio, needs to be optimized for every volume V. Once this is

done, an enthalpy curve can be constructed and compared

with that obtained from the bcc structure. Calculations using

DFT with the LDA or various GGA’s have been performed, and

it has been shown that in this particular case, the LDA gives

poor agreement with the experiments, even failing to predict

the correct zero-pressure crystal structure (Cho and Scheffler,

1996; K€orling and Häglund, 1992; Leung et al., 1991; Singh

et al., 1991; Zhu et al., 1992), while PW91, for example, pre-

dicts the transition between 10 and 13 GPa (depending on the

exact details of the pseudopotential or PAW potential) (Alfè

et al., 2000a), in good agreement with the experimental value,

which is in the range 10–15 GPa ( Jephcoat et al., 1986).

Finally, as the last example, we mention the Earth’s mantle

mineral MgSiO3 perovskite, which at mantle pressures has an

orthorhombic crystal structure with the atoms in the cell not

constrained by symmetry operations (D’Arco et al., 1993;

Stixrude and Cohen, 1993; Wentzcovitch et al., 1993). It fol-

lows that at any fixed volume, one needs to optimize not only

the lattice vectors but also the positions of the atoms in the cell.

Very recently, this mineral has been found to display a phase

transition to a new phase, named postperovskite (Murakami

et al., 2004; Oganov and Ono, 2004). This transition has also

been found by ab initio calculations (Iitaka et al., 2004;

Oganov and Ono, 2004; Tsuchiya et al., 2004). The transition

pressure from the static first-principles calculations appears to

be �100 GPa, which is below the core–mantle mantle pres-

sure. However, Oganov and Ono (2004) and Tsuchiya et al.

(2004) showed that high-temperature harmonic effects are

responsible for an increase in the transition pressure, which is

therefore predicted to be close to that at the top of D00 zone at
the bottom of the mantle.

2.15.3.1.2 Elastic constants
Most of what we know about the interior of our planet comes

from seismology and therefore from the elastic behavior of the

minerals inside the Earth. The theory of elasticity of crystals can

be found in standard books (Wallace, 1998), and therefore, we

will not dwell on it for too long. Briefly, if a crystal is subjected

to an infinitesimal stress dsij, with i and j running through the

three Cartesian directions in space, then it will deform accord-

ing to the strain matrix deij :

dsij ¼
X
k, l

cijkldekl [18]

The constant of proportionality between stress and strain,

Cijkl, is a rank 4 tensor of elastic constants. With no loss of

generality, we can assume dsij and deij to be symmetrical

(dsij 6¼dsji would imply a nonzero torque on the crystal,

which would simply impose an angular acceleration and not

a deformation), and therefore, the elastic constant tensor is

also symmetrical. It is therefore possible to rewrite the rank 2

tensors dsij and deij as six-component vectors, in the Voigt
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notation, with the index pairs 11, 22, 33, 23, 31, and 12 repre-

sented by the six symbols 1, 2, 3, 4, 5, and 6, respectively. In

this notation, the stress–strain relation appears as

dsi ¼
X
j

Cijdej [19]

with i and j going from 1 to 6. Elastic constants are given as the

coefficients Cij in this notation. The matrix Cij is symmetrical,

so that the maximum number of independent elastic constants

of a crystal is 21. Because of crystal symmetries, the number of

independent constants is usually much smaller. For example,

in cubic crystals, there are only three elastic constants; in hcp

Fe, there are five; and in orthorhombic MgSiO3 perovskite,

there are nine.

Equation [19] provides the route to the calculation of the

elastic properties of materials, and it can be applied at both

zero and high temperatures. At zero temperature, the compo-

nents of stress tensor can be calculated as (minus) the partial

derivative of the internal energy with respect to the compo-

nents of the strain:

sij ¼�@E=@eijje [20]

Examples of zero-temperature calculations of elastic con-

stants include the DFT calculations of Stixrude and Cohen

(1995) on the hcp crystal structure of iron at the Earth’s inner-

core conditions, which suggested a possible mechanism based

on the partial alignment of hcp crystallites to explain the seismic

anisotropy of the Earth’s inner core. Other examples are the

recent GGA and LDA calculations of the elastic constant of the

recently discovered postperovskite phase by three groups (Iitaka

et al., 2004; Tsuchiya et al., 2004; Oganov and Ono, 2004;

Oganov et al., 2005), which showed that this phase is elastically

very anisotropic and that with a proper alignment, it is possible

to explain the observed seismic anisotropy of the D00 region.
2.15.3.2 Finite Temperature

The extension to finite-temperature properties of materials

could simply be obtained by substituting the internal energy

E with the Helmholtz free energy F. The ij component of the

stress tensor sij is (minus) the partial derivative of F with

respect to strain eij, taken at constant T, and holding all the

other components of the strain tensor constant,

sij ¼�@F=@eijje,Τ [21]

Similarly, the pressure p is obtained as (minus) the partial

derivative of F with respect to volume, taken at constant

temperature:

p¼�@F=@V jT [22]

If the system of interest is at sufficiently high temperature

(above the Debye temperature), the nuclei can be treated as

classical particles, and the expression of the Helmholtz free

energy F for a system of N identical particles enclosed in a

volume V and in thermal equilibrium at temperature T is

(Frenkel and Smit, 1996)

F¼�kBT ln
1

N!L3N

ð
V

dR1 . . .dRNe
�bU R1, ...,RN;Tð Þ

	 

[23]
where L¼h/(2pMkBT )
1/2 is the thermal wavelength, with M

being the mass of the particles and h being the Plank’s

constant; b¼1/kBT,kB is the Boltzmann constant; and

U(R1,. . ., RN; T ) is the potential energy function, which

depends on the positions of the N particles in the system and

possibly on temperature, in which case U is the electronic free

energy. The multidimensional integral extends over the total

volume of the system V.

By taking (minus) the derivative of Fwith respect to volume

at constant temperature, we obtain

p V , Tð Þ¼NkBT

V
+

ð
V

dR1 . . .dRNe
�bU R1, ...,RN;Tð Þ �@U R1, ...,RN;Tð Þ

@V

� �
Tð

V

dR1 . . .dRNe
�bU R1, ...RN;Tð Þ

¼NkBT

V
+

�@U R1, . . .RN ;Tð Þ
@V

 �
T

� �
[24]

The first term is the kinetic pressure and is present also in a

system with no interactions between the particles (the ideal

gas). The appearance of this term can be also understood by

realizing that the integral appearing in eqn [23] is proportional

to VN. The second term is the canonical thermal average of the

derivative of the potential (free) energy function with respect to

volume, taken at constant temperature.

A similar expression holds for the stress tensor, which at

finite temperature is evaluated as the thermal average of the

derivative of F with respect to the strain components, plus the

kinetic term.

Analogously, the internal energy E¼ (@(F/T )/@(1/T ))V is

given by

E V , Tð Þ¼ 3

2
NkBT + U R1 . . .RN ;Tð Þh i [25]

This shows that a number of finite properties can simply be

calculated by taking the thermal average of the corresponding

quantity evaluated at T¼0, plus a trivial kinetic term.
2.15.3.2.1 Molecular dynamics
If the system is ergodic, thermal averages (represented in the

equations in the preceding text) can be calculated as time

averages along an MD simulation (Alder and Wainwright,

1959; Gibson et al., 1960). The main idea here is to move the

ions according to the Newton’s equations of motion. This is

achieved in practice by discretizing the equation of motion

mi@vi/@t¼Fi (mi is the mass of atom i, vi is its velocity, and Fi
is the force acting on it). This is done by dividing time into time

steps Dt and approximating the solution of the equation of

motion, for example, as proposed by Verlet (Allen and

Tildesley, 1987; Frenkel and Smit, 1996; Verlet, 1967):

ri t +Dtð Þ¼ 2ri tð Þ� ri t�Dtð Þ+ 1

mi
Fi tð ÞDt2 + o Dt4

� �
vi tð Þ¼ ri t +Dtð Þ� ri t�Dtð Þ

2Dt
+ o Dt3
� � [26]

If the time step is small enough (usually less than 1/20 of a

typical vibrational period), the Verlet algorithm conserves well

the total energy of the system, on both short and long time-

scales. If the volume of the simulation cell V and the number of
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atoms N are kept constant, this so-called (N, V, E) simulation

generates configurations in phase space that are distributed

according to the microcanonical ensemble.

It is a standard result of statistical mechanics that thermal

averages evaluated either in the microcanonical ensemble or

in the canonical ensemble are equivalent if the system is

sufficiently large, but it is useful to be able to perform simu-

lations in ensembles other than the microcanonical one. For

example, in order to obtain thermal averages in the canonical

ensemble (i.e., constantsN, V, and T ), like the pressure in eqn

[24], one can couple the system with an external heat bath,

following the prescription of Andersen (Andersen, 1980),

Nosé, or Hoover (Nosé, 1984; Hoover, 1985). When com-

bined with the Parrinello–Rahman constant-stress technique

(Parrinello and Rahman, 1980), this also allows simulations

to be performed at constant T and sab (see, e.g., Wentzcovitch

et al. (1993)).

The forces Fi can be calculated within the framework of DFT,

in which case the method is sometimes called first-principles

molecular dynamics (FPMD). As mentioned earlier, for the

method to be applicable in practice, onemakes the fundamental

approximation that the dynamics of the ions is decoupled from

that of the electrons. This is usually justified due to the large

difference in masses between the two sets of particles.

The first FPMD simulation was performed by Car and

Parrinello (CP) in 1985 (Car and Parrinello, 1985), who

proposed an elegant method to keep the electrons on the

ground state along the MD trajectory. This was done by

including the electronic degrees of freedom into a generalized

Lagrangian, by assigning a fictitious mass to the single-

particle wave functions and treating them as dynamic vari-

ables, like the positions of the ions. With a judicious choice

of this fictitious mass, the electronic degrees of freedom

would remain decoupled from the ionic ones, following

them adiabatically while remaining in the their ground state

(at least for nonmetallic systems). An alternative method is to

bring the electrons to the ground state at each time step

(Kresse and Furthmuller, 1996), which is usually more costly

than the CP scheme, but this is compensated by the possibil-

ity of making longer time steps. This method can be also

easily applied to metallic systems and can become very effi-

cient if combined with the extrapolation of the single-particle

wave functions (Arias et al., 1992; Mead, 1992) and the

electronic charge density (Alfè, 1999).

As some examples of the use of FPMD to compute thermal

averages and study the high-temperature properties of solids,

we mention the work of Oganov et al. (2001), who studied the

high-temperature elastic constants of MgSiO3 perovskite, and

more recently that of Wookey et al. (2005), who studied the

high-temperature elastic constants of MgSiO3 postperovskite,

and Gannarelli et al. (2005), who studied the elastic behavior

of hcp iron at inner-core p and T conditions.

Using MD simulations, it is also possible to study the

properties of liquids. For example, in a liquid, the atoms

are free to diffuse throughout the whole volume, and this

behavior can be characterized by diffusion coefficients Da,

where a runs over different species in the system. These Da

are straightforwardly related to the mean square displacement

of the atoms through the Einstein relation (Allen and

Tildesley, 1987):
1

Na

XNa

i¼1

rai t0 + tð Þ� rai t0ð Þj j2
* +

!6Dat, as t!1 [27]

where ria(t) is the vector position at time t of the ith atom of

species a,Na is the number of atoms of species a in the cell, and

h i means time average over t0. The diffusion coefficient can

also be used to obtain a rough estimate of the viscosity � of

the liquid, by using the relation between the two stated by the

Stokes–Einstein relation:

D�¼ kBT

2pa
[28]

This technique was used by de Wijs et al. (1998) to estimate

the viscosity of liquid iron at the Earth’s core conditions. The

Stokes–Einstein relation [28] is exact for the Brownian motion

of a macroscopic particle of diameter a in a liquid of viscosity �.

The relation is only approximate when applied to atoms; how-

ever, if a is chosen to be the nearest neighbors distance of the

atoms in the solid, eqn [28] provides results that agree within

40% for a wide range of liquid metals. To calculate the viscosity

rigorously, it is possible to use the Green–Kubo relation:

�¼ V

kBT

ð1
0

dt sxy tð Þsxy 0ð Þ� �
[29]

where sxy is the off-diagonal component of the stress tensor sab
(a and b are Cartesian components). This relation was used in

the context of first-principles calculations for the first time by

Alfè and Gillan (1998b), who first calculated the viscosity of

liquid aluminum at ambient pressure and a temperature of

1000 K, showing that the method provided results in good

agreement with the experiments and then applied the method

to the calculation of the viscosity of a liquid mixture of iron

and sulfur under the Earth’s core conditions. In Figure 3,

I show the integral in eqn [29] calculated from 0 to time t for

this iron sulfur liquid mixture. In principle, this has to be
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computed from zero to infinity, as stated in eqn [29]; however,

in this particular case, there is nothing to be gained by extend-

ing the integral beyond about 0.2 ps, after which the integrand

has decayed to zero and it is dominated by statistical noise. The

figure also shows the computed statistical error on the integral,

and from this, it was possible to infer the value for the viscosity

�¼9�2 mPa s, in good agreement with that obtained from

the diffusion coefficient via the Einstein relation [28], calcu-

lated to be ��13 mPa s in a previous paper (Alfè and Gillan,

1998a).
2.15.3.3 Thermodynamic Properties

The phase stability of a system is determined by the minimum

of its Gibbs free energy G¼F+pV. Since p¼�@F/@VjT, knowl-
edge of F as function of V and T allows the computation of G.

More generally, equilibrium in a multispecies system is

determined by the chemical potentials mi, with i running over

the different species, which represents the constant of propor-

tionality between the energy of the system and the amount of

the species i (Wannier, 1966):

mi ¼
@E

@Ni

 �
S,V

[30]

where S is the entropy and Ni is the number of particles of the

species i. Alternative equivalent definitions of the chemical

potential are (Wannier, 1966; Mandl, 1997)

mi ¼
@F

@Ni

 �
T,V

¼ @G

@Ni

 �
T,p

¼�T
@S

@Ni

 �
E,V

[31]

Equilibrium between two phases is determined by the condi-

tionofequalityof thechemicalpotentialof eachindividual species

in the two phases. In the next section, I start the discussion

by considering a single-component system. The extension to

multicomponentsystemswillbeconsideredinSection2.15.3.3.5.
2.15.3.3.1 The Helmholtz free energy: Low temperature
and the quasi-harmonic approximation
For a solid at low temperature, F can be easily accessed by

treating the system in the quasi-harmonic approximation.

This is obtained by expanding the potential (free) energy func-

tion U around the equilibrium positions of the nuclei. The first

term of the expansion is simply the energy of the system

calculated with the ions in their equilibrium positions,

Eperf(V, T ) (this is a free energy at finite temperature, because

of electronic entropy, and therefore depends on both V and T ).

If the crystal is in its minimum energy configuration, the linear

term of the expansion is zero, and by neglecting terms of order

three and above in the atomic displacements, we have that the

quasi-harmonic potential is

Uharm ¼ Eperf +
1

2

X
lsa, l0tb

Flsa, l0tbulsaul0tb [32]

where uls denotes the displacement of atom s in unit cell l,

a and b are Cartesian components, and Flsa, l0tb is the force-

constant matrix, given by the double derivative @2U=@ulsa@ul0tb
evaluated with all atoms at their equilibrium positions. This

force-constant matrix gives the relation between the forces Fls
and the displacements ul0t, as can be seen by differentiating

eqn [32]:

Flsa ¼�@U=@ulsa ¼�
X
l0tb

Flsa, l0tbul0tb [33]

Within the quasi-harmonic approximation, the potential

energy function Uharm completely determines the physical

properties of the system, and in particular the free energy,

which takes the form

F V, Tð Þ¼ Eperf V, Tð Þ+ Fharm V, Tð Þ [34]

where the quasi-harmonic component of the free energy is

Fharm ¼ kBT
X
n

ln 2sinh ℏwn=2kBTð Þð Þ [35]

with wn being the frequency of the nth vibrational mode of the

crystal. In a periodic crystal, the vibrational modes can be

characterized by a wave vector k, and for each such wave

vector, there are three vibrational modes for every atom in

the primitive cell. If the frequency of the sth mode at wave

vector k is denoted by wks, then the vibrational free energy is

Fharm ¼ kBT
X
ks

ln 2sinh ℏwks=2kBTð Þð Þ [36]

The vibrational frequencies wks can be calculated from first

principles, and we shall see in the succeeding text how this can

be done.

Once this quasi-harmonic free energy is known, all the

thermodynamic properties of the system can be calculated. In

particular, the pressure is given by

p¼�@F=@VjT ¼�@Eperf=@V jT �@Fharm=@V jT [37]

The last term in the equation in the preceding text is the

ionic component of the thermal pressure, and it is different

from zero because the vibrational frequencies wks depend on

the volume of the crystal. In fact, it is easy to see from eqn [36]

that even at zero temperature, there is a finite contribution to

the quasi-harmonic free energy, given by

Fharm V , 0ð Þ¼
X
ks

ℏwks

2
[38]

This zero-point energy contribution to the harmonic free

energy is also responsible for a contribution to the pressure.

Since usually the vibrational frequencies wks increase with

decreasing volume, these contributions are positive and are

responsible for the phenomenon of thermal expansion in

solids.

The dependence of Eperf (V, T ) on T also means that there is

an electronic contribution to the thermal pressure, which is

also positive, and in some cases (i.e., iron at Earth’s core

conditions) can be a significant fraction of the thermal pressure

and a nonnegligible fraction of the total pressure (Alfè

et al., 2001).

As an example of a calculation of the thermal expansivity of

minerals using the quasi-harmonic approximation, I show in

Figure 4 the temperature dependence of the thermal expansivity

a of MgO at pressures up to 200 GPa, compared with experi-

mental results. At ambient pressure, the first-principles a(T)
agrees very closely with experiment up to �1000 K (about
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one-third of the melting temperature), which is a result of the

good agreement of the calculated phonons with the experimen-

tal ones. The increasingly poor agreement at high T is due to

anharmonic effects coming into play. These can be taken into

account by avoiding the quasi-harmonic approximation and

evaluating the full free energy of the system, as we shall see in

Section 2.15.3.3.3.

2.15.3.3.2 Calculation of phonon frequencies
There are two different first-principles strategies for calculating

phonon frequencies. The method that is easier to understand

starts from the fact that the force-constant matrix expresses the

proportionality between displacements and forces, when the

displacements are small enough for this relationship to be

linear. All that has to be done in principle is to displace a single

atom t in cell l0 in Cartesian direction b, all other atoms being

held fixed at their equilibrium positions; the forces Flsa on all

the atoms then give directly the elements of the force-constant

matrix Flsa, l0tb for the given (l0tb). If this procedure is repeated

for all other (l0tb), all the elements of the force-constant matrix

can be obtained. Translational invariance implies that the

number of separate calculations required to do this is at most

three times the number of atoms in the primitive cell, but for

most materials, symmetry relations can be used to reduce this

number substantially. This strategy, sometimes called the small

displacement method (Kresse et al., 1995), is implemented, for

example, in the PHON code (Alfè, 2009a). Although the small

displacement method is widely used and can be very accurate,

a word of caution is in order. Since DFT calculations on con-

densed matter always use periodic boundary conditions, the

repeating cell must be large enough so that the elements Flsa, l0tb

have all fallen off to negligible values at the boundary of the
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Figure 4 Temperature dependence of thermal expansivity a of MgO on
isobars at 0, 10, 30, 60, 100, 150, and 200 GPa (curves from top to
bottom). Experimental data at zero pressure are indicated by filled circles.
Average value of a over temperature range of 300–3300 K and
pressure range of 169–196 GPa derived from shock-wave experiments
is indicated by the diamond.
repeating cell. This is readily achieved for some materials,

particularly metals. However, in ionic materials, the force-

constant elements fall off only as r�3, and convergence can be

slow. Moreover, in polar materials, the Coulomb forces pro-

duce a macroscopic electric field in the limit of zero wave

vector. This electric field is responsible for a splitting in the

frequencies of the vibrational modes parallel and perpendicu-

lar to the electric field (the so-called LO–TO splitting). This

effect can be taken into account by adding a nonanalytic con-

tribution to the dynamic matrix at wave vector k, which has the

form (Giannozzi et al., 1991)

Dna
sa, tb ¼ msmtð Þ�1=2 4pe2

O
kZ*

s

� �
a kZ*

t

� �
b

ke1k
[39]

where Zs* is the Born effective charge tensor for atom s,e1 the

high-frequency static dielectric tensor, and ms, mt the mass of

the atoms. These two quantities can be calculated in the frame-

work of density functional perturbation theory (Baroni et al.,

1987, 2001; Giannozzi et al., 1991) (DFPT), which also pro-

vides a second elegant strategy for the calculation of phonons

in crystals. The main idea in DFPT, pioneered by Baroni et al.

(1987), is to exploit the Hellmann–Feynman theorem to show

that a linear order variation in the electron density upon appli-

cation of a perturbation to the crystal is responsible for a

variation in the energy up to second (in fact, third (Gonze

and Vigneron, 1989)) order of the perturbation. Using the

standard perturbation theory, this linear order variation of

the electronic charge density can be calculated using only

unperturbed wave functions, which therefore only require cal-

culations on the ground-state crystal. If the perturbation is a

phonon wave with wave vector k, calculation of the density

change to linear order in the perturbation can be used to

determine the force-constant matrix at wave vector k. This

can be done for any arbitrary wave vector, without the need

of the construction of a supercell. The implementation of the

method is by no means straightforward, and for further details,

the reader should consult the original papers (Baroni et al.,

1987; Giannozzi et al., 1991).

It should be pointed out, however, that free energies com-

puted with the small displacement method converge very

quickly to the thermodynamic limit with the size of the super-

cell, as demonstrated for the case of MgO in Alfè (2009a), even

when LO–TO splitting is ignored. An additional advantage of

the small displacement method is that it only requires the

computation of forces and therefore does not need to be inte-

grated into a first-principles code. Moreover, for large unit cells,

the small displacement method is usually more efficient

than DFPT.

As an example of first-principles calculations of phonon

frequencies using the small displacement method (Alfè,

2009a), I show in Figure 5 the phonon dispersion relations

for bcc iron under ambient conditions, compared with exper-

imental data. We see that the agreement between theory and

experiments is very good almost everywhere in the Brillouin

zone, with discrepancies being at worst �3%.

Phonons can also be calculated at high pressure, and as an

illustration of this, in Figure 6, I show a comparison between

DFT–GGA-calculated phonons, using the small displacement

method (Alfè, 2009a), and nuclear resonant inelastic x-ray

scattering (NRIXS) (Seto et al., 1995; Sturhahn et al., 1995)
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experiments, of phonon density of states of bcc and hcp iron

from 0 to 153 GPa (Mao et al., 2001). The agreement between

theory and experiments is good in the whole pressure region,

being slightly better at high pressure.

The NRIXS technique has also been recently used to mea-

sure the partial density of states of FeS as a function of pressure

(Kobayashi et al., 2004). Measurements were taken at pressures
of 1.5, 4.0, and 9.5 GPa, in the troilite, MnP-type, and mono-

clinic crystal structures of FeS, respectively, and were compared

with first-principles calculations based on DFT–GGA. The

agreement between the calculations and the experiments was

reasonably good, although the FeS in the troilite structure was

found to be unstable. The calculations were also used to pro-

vide the total density of states, which provided thermodynamic

quantities such as the entropy and the specific heat.

2.15.3.3.3 The Helmholtz free energy: High temperature
and thermodynamic integration
At high temperature, anharmonic effects in solids may start to

play an important role, and the quasi-harmonic approxima-

tion may be not accurate enough. Moreover, if the system of

interest is a liquid, the quasi-harmonic approximation is of no

use. In this section, I shall describe a method to calculate the

free energy of solids and liquid in the high temperature limit,

provided that the temperature is high enough that the quan-

tum nature of the nuclei can be neglected. If this is the case, the

Helmholtz free energy F is defined as in eqn [23].

Performing the integral in eqn [23] to calculate F is

extremely difficult. However, it is less difficult to calculate

changes in F as some specific variables are changed in the

system. For example, we have seen that by taking the derivative

of F in eqn [23] with respect to volume at constant T, we obtain

(minus) the pressure. Therefore, the difference of F between

two volumes can be obtained by integrating the pressure p,

which can be calculated using an MD simulation. Similarly,

by integrating the internal energy E, one obtains differences

in F/T.

It is equally possible to calculate differences in free energy

between two systems having the same number of atoms N, the

same volume V, but two different potential energy functions

U0 and U1. This can be done by introducing an intermediate

potential energy function Ul such that for l¼0, Ul¼U0, and

for l¼1, Ul¼U1, and such that for any value of 0<l<1, Ul

is a continuous and differentiable function of l. For example, a

convenient form is

Ul ¼ 1� f lð Þð ÞU0 + f lð ÞU [40]

where f(l) is an arbitrary continuous and differentiable func-

tion of l in the interval 0�l�1, with the property f(0)¼0 and

f(1)¼1. According to eqn [23], the Helmholtz free energy of

this intermediate system is

Fl ¼�kBT ln
1

N!L3N

ð
V

dR1 . . .dRNe
�bUl R1, ...,RN;Tð Þ

	 

[41]

Differentiating this with respect to l gives

dFl
dl

¼

ð
V

dR1 . . .dRNe
�bUl R1, ...,RN;Tð Þ @Ul

@l

 �
ð
V

dR1 . . .dRNe
�bUl R1, ...,RN;Tð Þ

¼ @Ul

@l

� �
l

[42]

and therefore, by integrating dFl/dl, one obtains

DF¼ F1�F0 ¼
ð1
0

dl
@Ul

@l

� �
l

[43]

This also represents the reversible work done on the system

as the potential energy function is switched from U0 to U1.
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In most cases, a suitable choice for the function that mixes U0

andU1 is simply f(l)¼l, and the thermodynamic formula [43]

takes the simple form

DF¼ F1�F0 ¼
ð1
0

dl U1�U0h il [44]

This way to calculate free energy differences between two

systems is called thermodynamic integration (Frenkel and

Smit, 1996). The usefulness of the thermodynamic integration

formula expressed in eqn [43] becomes clear when one iden-

tifies U1 with the DFT potential (free) energy function and U0

with some classical model potential for which the free energy

is easily calculated, to be taken as a reference system. Then

eqn [43] can be used to calculate the DFT free energy of the

system by evaluating the integrand hU1�U0il using FPMD

simulations at a sufficiently large number of values of l and

calculating the integral numerically. Alternatively, one can adopt

the dynamic method described by Watanabe and Reinhardt

(1990). In this approach, the parameter l depends on time

and is slowly (adiabatically) switched from 0 to 1 during a single

simulation. The switching rate has to be slow enough so that the

system remains in thermodynamic equilibrium and adiabati-

cally transforms from the reference to the ab initio system. The

change in free energy is then given by

DF¼
ðTsim
0

dt
dl
dt

U1�U0ð Þ [45]

where Tsim is the total simulation time, l(t) is an arbitrary

function of t with the property of being continuous and differ-

entiable for 0� t�1, l(0)¼0, and l(Tsim)¼1.

Thermodynamic integration can be used to calculate the

free energies of both the solids and liquids. It is clear from

eqn [43] that the choice of the reference system is almost

completely irrelevant (of course, the stability of the system

cannot change as l is switched from 0 to 1), provided that DF
can be calculated in practice. So, if the goal is to obtain ab

initio free energies, it is essential to minimize the amount of ab

initio work in order to make the calculations feasible. This is

achieved by requiring that (i) the integrand in eqn [43] is a

smooth function of l, (ii) the thermal averages hU1�U0il can
be computed within the required accuracy on the timescales

accessible to FPMD, and (iii) the convergence of DF as a func-

tion of the number of atoms N in the system is again achieved

with N accessible to first-principles calculations. All points (i),

(ii), and (iii) could obviously be satisfied by a perfect reference

system, that is, a system that differed from the ab initio system

only by an arbitrary constant. In this trivial case, the integrand

eqn [43] would be a constant, and thermal averages could be

calculated on just one configuration and with cells containing

an arbitrary small number of atoms. The next thing close to a

constant is a slowly varying object, and this therefore provides

the recipe for the choice of a good reference system, which has

to be constructed in such a way that the fluctuations in U1�U0

are as small as possible. If this is the case, thermal averages of

U1�U0 are readily calculated on short simulations. Moreover,

hU1�U0il is a smooth function of l, so a very limited number

of simulations for different values of l are needed and, finally,

convergence of hU1�U0il with respect to the size of the system

is also quick. In fact, if the fluctuations in U1�U0 are small

enough, one can simply write F1�F0’hU1�U0i0, with the
average taken in the reference system ensemble. If this is not

good enough, the next approximation is readily shown to be

F1�F0 ’ U1�U0h i0�
1

2kBT
U1�U0� U1�U0h i0
� �2D E

0
[46]

This form is particularly convenient since one only needs to

sample the phase space with the reference system and perform

a number of ab initio calculations on statistically independent

configurations extracted from a long classical simulation.

Once the Helmholtz free energy of the system is known,

it can be used to derive its thermodynamic properties. For

example, it is possible to calculate properties on the so-called

Hugoniot line and compare the results with those obtained in

shock-wave experiments. The data that emerge most directly

from shock-wave experiments consist of a relation between the

pressure pH and the molar volume VH on the Hugoniot line,

which is the set of thermodynamic states given by the

Hugoniot–Rankine formula (Poirier, 1991):

1

2
pH V0�VHð Þ¼ EH�E0 [47]

where EH is the molar internal energy behind the shock front

and E0 and V0 are the molar internal energy and volume in the

zero-pressure state ahead of the front. These experiments are

particularly useful in identifying the melting transition. This is

done by monitoring the speed of sound, which shows discon-

tinuities at two characteristic pressures ps and pl;, which are the

points where the solid and liquid Hugoniots meet the melting

curve. Below ps, the material behind the shock front is entirely

solid, while above pl, it is entirely liquid; between ps and pl, the

material is a two-phase mixture. To illustrate an example of the

quality of the DFT–GGA predictions of the Hugoniot line,

I show in Figure 7 the calculations of the p(V) relation on

the Hugoniot by Alfè et al. (2002a) for solid and liquid iron,

compared with the experimental data obtained by Brown and
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McQueen (1986). We can see that the agreement between the

theory and experiments is extremely good. The two theoretical

curves come from raw and free energy-corrected calculations

(see the succeeding text). In Figure 8, I show a comparison of

the calculated speed of sounds of the liquid with those

obtained in the shock-wave experiments. Again, the agreement

between the two sets of data is extremely good.

2.15.3.3.4 Melting
The first to use thermodynamic integration in the context of

first-principles calculations were Sugino and Car (SC) (1995),

who calculated the Gibbs free energies G of solid silicon and

liquid silicon at ambient pressure to obtain the DFT–LDA

melting temperature Tm, given by the condition Gl(Tm)¼
Gs(Tm), with superscript l and s indicating the liquid and

solid, respectively. In their work, SC used a Stillinger–Weber

potential (Stillinger and Weber, 1985) as reference system for

both the solid and liquid, coupled with the scheme described

in eqn [45] to compute free energy differences. They found that

using a switching time Tm of <1 ps was already sufficient to

obtain a statistical accuracy on the free energies capable of

predicting the melting temperature with an error of the order

of 50 K. The importance of the SC work was that it showed that

with a judicious choice of the reference system, these kinds of

calculations are entirely accessible to first-principles tech-

niques. The calculated LDA melting temperature of Si was

1350 K, about 20% lower than the experimental value

(1680 K). Subsequent work showed that by using the GGA

approximation, the calculated zero-pressure melting point

was �1500 K (Alfè and Gillan, 2003) and that by using the

recently developed metaGGA (Staroverov et al., 2004; Tao

et al., 2003), the results were very close to the experimental

value (Wang et al., unpublished.). Shortly after the work of SC,

de Wijs et al. used DFT–LDA in combination with thermody-

namic integration to calculate the zero-pressure melting point

of Al (de Wijs et al., 1998). They found the value of 890 K, in

good agreement with the experimental value 933 K.

Encouraged by these early successes, DFT–GGA and ther-

modynamic integration were used by Alfè et al. (Alfè, 1999;
Alfè et al., 2001, 2002a) to calculate the free energies of solid

and liquid iron under the Earth’s core conditions, which they

used to obtain a number of thermodynamic properties, includ-

ing the whole melting curve in the region �50–400 K. They

discovered that a simple sum of inverse power pair potentials

of the form UIP(r)¼B/ra, where r is the distance between two

ions and B and a are two adjustable parameters, did an excel-

lent job in describing the energetics of the liquid and the high-

temperature solid, provided that B and a were appropriately

adjusted. As mentioned in the previous section, an additional

crucial advantage of having a good reference system is that

convergence of F1�F0 with respect to the size of the system is

very rapid, and in fact, for both solid iron and liquid iron, Alfè

et al. found that already with 64-atom systems, F1�F0 was

converged to within better than 10 meV per atom, which in

turn implied melting temperature converged to better than

100 K with respect to this single technical point. Their best

estimate for the melting point at the inner–outer core bound-

ary pressure of 330 GPa was Tm¼6350�300 K, where the

error quoted is the result of the combined statistical errors in

the free energies of the solid and liquid. Systematic errors due

to the approximations of DFT are more difficult to estimate,

and additional information can only be obtained when the

problem is studied using a more accurate implementation of

quantum mechanics. I will come back to this point later in the

chapter.

At the present state of knowledge, the experimental under-

standing of the melting point of Fe under the Earth’s core

conditions is still scarce, as experiments based on diamond-

anvil cells (DAC) cannot reach these pressures. Moreover, even

in the region of the phase space where DAC experiments are

possible, there is still considerable disagreement between dif-

ferent groups (Boehler, 1993; Ma et al., 2004; Shen et al., 1998)

and between DAC and shock-wave experiments (Brown and

McQueen, 1986; Nguyen and Holmes, 2004). However, the

state of the art is improving, and very recently, two new DAC

experiments have highlighted the difficulty of detecting the

melting transition in older experiments (Boehler, 1993).

Jackson et al. (2013) used synchrotron M€ossbauer spectros-

copy to monitor the dynamics of the iron atoms, and

Anzellini et al. (2013) used x-ray spectroscopy to identify the

onset on melting from the complete disappearance of peaks

due to the presence of the solid from the spectrum. In partic-

ular, Anzellini et al. (2013) found that before melting, the

system goes through a fast recrystallization process, at a tem-

perature very close to that measured by Boehler (1993). They

therefore suggested that this was the process detected in these

older experiments (Boehler, 1993) and not melting. The results

of Anzellini et al. (2013) agree very closely with the theoretical

predictions of Alfè et al. (2002a).

On the theoretical side, I mention also the work of Laio et al.

(2000) and Belonoshko et al. (2000), who performed DFT-

based simulations to calculate the melting curve of Fe under

the Earth’s core conditions, although their approach was rather

different from that of Alfè (1999) and Alfè et al. (2001, 2002a).

Instead of calculating free energies, Laio et al. (2000) and

Belonoshko et al. (2000) fitted a classical model potential to

their first-principles calculations and then used the classical

potential to compute the melting curve. To do so, they used

the coexistence method, in which the solid and liquid are
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performed using G-point sampling only. Open triangle is the result from a
2	2	1 k-point grid on a 512-atom system. The solid line is the lower
end of the melting curve calculated using the free energy approach in
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simulated in contact in a box. This method is an alternative

route to the calculation of melting curves and therefore equiva-

lent to the free energy approach. However, Laio et al. and

Belonoshko et al. found that at the pressure of 330 GPa, iron

melted at 5400 and 7000 K, respectively. The reason of these

large differences and the difference with the value 6350 K

reported by Alfè et al. is due to the quality of the classical

potentials employed and in particular to the free energy differ-

ences between these classical potentials and the DFT system.

This was later investigated by Alfè et al. (2002b), who showed

that it is possible to assess the differences in free energies

between the classical potential and the DFT one and correct

for it. In particular, it was shown that at a fixed pressure p, the

first approximation of the difference T0 in the melting tempera-

ture between the classical potential and the ab initio system is

given by

T 0 ¼DGls Tmodð Þ=Slsmod [48]

where Smod
ls is the entropy of fusion of the model potential,

Tmod its melting temperature, and DGls¼(Gab
l �Gmod

l )�
(Gab

s �Gmod
s ), where G is the Gibbs free energy; the subscripts

‘ab’ and ‘mod’ indicate the ab initio and the model system,

respectively; and the superscripts ‘l’ and ‘s’ indicate the liquid

and solid, respectively. These differences of Gibbs free energies

can be calculated using thermodynamic integration, which if

the model potential is not too different from the ab initio, one

can be calculated using the perturbative approach outlined in

eqn [46] in the preceding text. The relation between DG, eval-
uated at constant p, and DF, calculated at constant V, is readily

shown to be

DG¼DF�1

2
VkTDp2 + o Dp3

� �
[49]

where KT is the isothermal compressibility and Dp is the change
of pressure when Umod is replaced by Uab at constants V and T.

Once these corrections were applied, the results of Belonoshko

et al. (2000) came in perfect agreement with those of Alfè et al.

(2002a). These results are all displayed in Figure 9, together

with a number of experimental data.

The coexistence method mentioned in the preceding text is

an alternative route to the calculation of melting properties and

as such delivers the same results if applied consistently. For its

very nature, themethod is intrinsically very expensive, because it

requires simulations on systems containing a large number of

atoms, typically many hundreds or even thousands. For this

reason, until very recently, it had been only applied to calcula-

tions employing classical potentials. However, it has been

recently shown that the method can in fact be applied also in

the context of first-principles calculations. As computers become

faster and faster, this method will become more and more

common also within the context of first-principles calculations.

In Figure 10, I show the low-pressure melting curve of

aluminum, as obtained by Vočadlo and Alfè with the free

energy approach and the GGA XC potential (Vočadlo and

Alfè, 2002) and, later, with the coexistence approach (Alfè,

2003), using the very same electronic structure techniques.

This was the first time that the coexistence method was being

applied using first-principles techniques. The simulations were

performed on systems containing up to 1728 atoms, and the

results showed that already, with modest system sizes of 512

atoms, the points calculated with the coexistence approach
differed from those obtained with the free energy approach

by no more than 50 K. In fact, this difference was reduced even

further if the 512-atom simulation was carried out with a

denser k-point grid sampling, showing that genuine size effects
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are very small already in systems containing 512 atoms. Note

that the zero-pressure melting temperature of 786 K obtained

with the GGA is not in very good agreement with the experi-

mental value 933 K. It was argued (Vočadlo and Alfè, 2002)

that the main cause of this discrepancy was a deficiency of the

GGA of predicting the correct zero-pressure density, which

comes out to be too large, and this would effectively corre-

spond to calculating the melting temperature at a negative

pressure. By applying a correction to the Helmholtz free energy

in order to obtain the zero-pressure density for the solid and

assuming that the same correction also applied to the liquid,

they found that this corrected free energy predicted a zero-

pressure melting temperature of 912 K, in excellent agreement

with the experimental datum.

A short time after the coexistence work on aluminum, a

second calculation using the same technique to calculate the

melting curve of LiH appeared (Ogitsu et al., 2003) and more

recently for the calculation of the melting curve of hydrogen

up to 200 GPa (Bonev et al., 2004) and the melting curve of

MgO in the pressure range 0–135 GPa (Alfè, 2005), reported

in Figure 11. This last work was performed with both the LDA

and the GGA exchange-correlation functionals, and despite

that the results at high pressure were very similar, at zero

pressure, the two calculations differed by about 20%, with

the LDA being in good agreement with the experimental

datum and the GGA predicting a lower melting temperature.

This work also pointed out that the contribution of the elec-

tronic entropy to the free energy was nonnegligible and very

different between the solid and liquid, such that it is respon-

sible of a lowering of about 130(750)K of the melting tem-

perature in the low(high)-pressure region of the phase

diagram. This may be surprising, as solid MgO is a large

band gap insulator, and indeed, a significant band gap

remains in the high-temperature solid. However, the absence

of local order in the liquid is such that the band gap is greatly
0

3000

5000

7000

9000

50
P (GPa)

T 
(K

)

100 150

Figure 11 Melting curve of MgO obtained with DFT–LDA coexistence
simulations performed on 432-atom cells (blue dots and heavy solid
line), 1024-atom cell (green square), and DFT–GGA results (red triangles;
Alfè, 2005), compared with experiments (open diamonds; Zerr and
Boehler, 1994). Other curves show results of earlier modeling work
based on interaction models. Reproduced from Alfè D (2005) Physical
Review Letters 94: 235701, with permission. Copyright 2005 American
Physical Society.
reduced, with a correspondingly significant increase of elec-

tronic entropy. In fact, recent experiments find that above

600 GPa, the electrical conductivity of liquid MgO increases

significantly, suggesting that under these conditions, it

becomes a metal (McWilliams et al., 2012). This emphasizes

the need to accurately include electronic effects in the calcu-

lation of melting properties.

I now return to the melting point of iron at ICB pressures to

describe two recent developments on the simulation side. Tak-

ing advantage of the large increase in computer power,

I revisited the problem by performing a series of coexistence

simulations using cells containing 980 atoms, using DFT. The

simulations were performed at fixed cell lattice parameters,

which results in slight nonhydrostatic conditions. To estimate

both the effect of nonhydrostaticity and finite simulation cell

size, I performed constant-stress simulation on much larger

systems (7840 atoms) using an embedded atom model con-

structed to closely reproduce the energetics of iron at these

conditions. The tests showed that nonhydrostaticity is respon-

sible for an underestimate of the melting temperature by

’100 K and finite size for an overestimate of ’100 K, so

that the two errors cancel each other. The simulation provided

a melting point of 6370�100 K at 328 GPa, which is on the

melting curve obtained using the free energy approach (Alfè

et al., 2002a). Around the same time, Sola and Alfè (2009)

used QMC methods to investigate the accuracy of DFT at pre-

dicting the melting point of iron at the Earth’s core conditions.

This was done by computing free energy differences between

QMC and DFT using the perturbative method described in

eqns [46] and [48] in the preceding text. The calculations

showed a slight increase of melting temperature to

6900�400 K (the error corresponds to one standard devia-

tion), which essentially confirmed the DFT prediction of a

‘high’ melting point of iron at the Earth’s core conditions.
2.15.3.3.5 Solutions
I now turn the discussion to systems formed by more than

one species of atoms. For example, consider two different

substances and mix them together, and in general, they will

form a solution, like sugar and coffee. I call solvent the sub-

stance present in the largest quantity (coffee) and solute the

other (sugar). In general, solutions may have more than one

solute and/or more than one solvent, but for simplicity, we will

focus here only on binary mixtures.

In this section, I want to discuss how first-principles

methods can be used to study the thermodynamic properties

of solutions. As an example of the methods to be discussed,

I will present calculations on iron alloyed with either sulfur or

silicon or oxygen, at the conditions of pressure and tempera-

ture of the Earth’s inner-core boundary, and how these calcu-

lations have been used to estimate the composition of the core.

The techniques, however, are completely general and can be

applied also to other systems under different thermodynamic

conditions.

As mentioned in the preceding text, the behavior of solu-

tions can be understood in terms of the chemical potential mi,
defined in eqns [30] and [31]. Consider now a solution with

NA particles of solvent A and NX particles of solute X, with

N¼NA+NX. In the high temperature limit, the Helmholtz

free energy of this system is
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F¼�kBT ln
1

L3NA

A L3NX
X NA!NX!

ð
V

dR1 . . .dRNe
�U R1, ...,RN;Tð Þ=kBT

[50]

According to eqn [31], we have

mX ¼
@F

@NX

 �
T,V

¼ F NA,NX + 1ð Þ�F NA,NXð Þ [51]

which can be evaluated using eqn [50]:

mX ¼�kBT ln
1

L3
X NX +1ð Þð

V

dR1 . . .dRNdRN +1e
�U R1, ...,RN ,RN + 1;Tð Þ=kBTð

V

dR1 . . .dRNe
�U R1, ...,RN;Tð Þ=kBT

[52]

The ratio of the two integrals is an extensive quantity, but mX
is an intensive quantity; therefore, it is useful to rewrite the

expression as follows:

mX ¼�kBT ln
N

NX +1ð Þ

1

NL3
X

ð
V

dR1 . . .dRNdRN +1e
�U R1, ...,RN ,RN + 1;Tð Þ=kBTð

V

dR1 . . .dRNe
�U R1, ...,RN;Tð Þ=kBT

8>><>>:
9>>=>>; [53]

so that the value in curly brackets is now independent on

system size. By setting cX¼NX/N (which in the limit of large

N and NX is the same as (NX+1)/N) and

emX ¼�kBT ln
1

NL3
X

ð
V

dR1 . . .dRNdRN + 1e
�U R1, ...,RN ,RN + 1;Tð Þ=kBTð

V

dR1 . . .dRNe
�U R1, ...,RN;Tð Þ=kBT

8>><>>:
9>>=>>;

[54]

we can rewrite the chemical potential in our final expression:

mX p, T, cXð Þ¼ kBT lncX +emX p, T, cXð Þ [55]

The first term of eqn [55] depends only on the number

of particles of solute present in the solution, while the

second term is also responsible for all possible chemical

interactions.

For small concentration of solute, we can make a Taylor

expansion of emX :
emX ¼ m0X + lcX + o c2X

� �
[56]

where l¼ @emX=@cXð Þp,T . If the solution is so dilute that the

particles of the solute do not interact with each other, we can

stop the expansion to the first term, and we have

mX p, T, cXð Þ¼ kBT lncX +m0X p, Tð Þ [57]

A system in which eqn [57] is strictly satisfied is called an

ideal solution.

To find an expression for the chemical potential of the

solvent, we employ the Gibbs–Duhem equation, which for a

system at constant pressure and constant temperature reads

(Wannier, 1966) X
i

Nidmi ¼ 0 [58]
In particular, in our two-component system, the Gibbs–

Duhem equation implies

cAdmA + cXdmX ¼ 0 [59]

which gives (Alfè et al., 2002c)

mA p, T, cXð Þ¼ m0A p, Tð Þ+ kBT + lX p, Tð Þð Þ ln 1� cXð Þ
+ lX p, Tð ÞcX +O c2X

� �
[60]

where mA
0 is the chemical potential of the pure solvent. To linear

order in cX, this gives

mA p, T, cXð Þ¼ m0A p, Tð Þ�kBTcX +O c2X
� �

[61]

Despite that mA
0 is the chemical potential of the pure solvent,

note that mX
0 is not the chemical potential of the pure solute,

unless the validity of eqn [57] extends all the way up to cX¼1.

2.15.3.3.6 First-principles calculations of chemical
potentials
To calculate mX, it is useful to consider the difference in chem-

ical potential between the solute and the solvent mXA¼mX�mA,
which is equal to the change of Helmholtz free energy of the

system as one atom of the solvent is transmuted into an atom

of solute at constant volume V and constant temperature p.

This transmutation does not obviously correspond to a real

physical process, but provides a perfectly rigorous way of cal-

culating the difference of chemical potentials:

mXA ¼ kBT ln
cX

1� cX
+3kBT ln LX=LAð Þ+m cXð Þ [62]

where LX and LA are the thermal wavelengths of solute and

solvent and

m cXð Þ¼�kBT ln

ð
V

dR e�bU NA�1,NX +1;Rð Þð
V

dR e�bU NA,NX; Rð Þ
[63]

with U(NA, NX; R) being the potential energy of the system

with NA atoms of solvent and NX atoms of solute and U(NA�1,

NX+1; R) being the one for the system in which one of the

atoms of solvent has been transmuted into the solute.

The thermodynamic integration technique described in

Section 2.15.3.3.3 can now be used to compute m(cX) in the

liquid state. This is done by defining an intermediate potential

Ul¼lU(NA�1, NX+1; R)+(1�l)U(NA, NX; R), so that m(cX)

can be expressed as

m cXð Þ¼
ð1
0

dl U NA�1,NX + 1ð Þ�U NA,NXð Þh il [64]

In practice, the calculation of m(cX) is done by performing

two separate simulations, one withNA atoms of solvent andNX

of solute and the other withNA�1 atoms of solvent andNX+1

atoms of solute. At the end of each time step, forces are

computed in both systems, and their linear combination

fl¼lf(NA�1, NX+1)+(1�l) f(NA, NX) is used to evolve the

system in time in order to compute the thermal average

hU(NA�1, NX +1)�U(NA, NX)il. This is repeated at a number

of different values of l, and the integral is performed numeri-

cally. Alternatively, an approach similar to the one described in
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eqn [45] is also possible, in which l is slowly varied from zero

to one in the course of the simulation.

To improve statistics, it is useful to transmute many atoms

of solvent into solute. In this case, one does not obtain directly

mXA at a chosen concentration, but an integral of this over a

range of concentrations. However, by repeating the calcula-

tions transmuting a different number of atoms at a time, it is

possible to extract information about the value of mXA in a

whole range of concentration, as described in Alfè et al.

(2002c). To illustrate the feasibility of these kinds of calcula-

tions, in Figure 12, we show the value of the integrand in eqn

[64] as function of lambda for an iron–oxygen liquid mixture

at a pressure of 370 GPa and a temperature of 7000 K. The

error in calculating this integral is of the order of 0.1 eV, which

is very small for the purposes of evaluating the partitioning of

oxygen between solid iron and liquid iron and the depression

of melting point resulting from this partitioning (see the suc-

ceeding text). This pressure is somewhat higher than the ICB

pressure of 330 GPa. The temperature is also higher than the

melting temperature of iron; however, it was argued in Alfè

et al. (2002c) that this would not change the chemical poten-

tial of O by more than 0.3 eV, which again does not have any

effect of the conclusions to be presented in the succeeding text.

In the solid state, thermodynamic integration is not the

most appropriate way of calculating the chemical potential

difference mXA. This is clear, because in the zero-temperature

limit, at infinite dilution, m(cX!0) is simply the change in

internal energy when one atom in the perfect lattice of solvent

is replaced by a solute atom, the impurity system being relaxed

to equilibrium. This requires only a static calculation of the

type described in Section 2.15.3.1. At finite temperatures in

the infinite dilution limit, m(cX!0) can be obtained from the

quasi-harmonic vibrational frequencies of the pure A system

and the system containing a single X impurity. If anharmonic

effects are significant, as they are in the case of O substituted in

hcp Fe (Alfè et al., 2000b), thermodynamic integration can be

used to estimate the anharmonic effects. These methods can

also be generalized to include the variation of m(cX) with cX to

linear order in cX (Alfè et al., 2002c).

The evaluation of m(cX) only gives access to the difference

between the chemical potential of the solute and that of the
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Figure 12 The integrand hU1�U0il (eV units) appearing in the
thermodynamic integration formula in eqn [64]. Results shown refer to
oxygen solute for NX¼12 and N¼64. Filled circles show values
computed from ab initio m.d. simulations, with bars indicating statistical
errors. Curve is a polynomial fit to the computed values.
solvent. Therefore, in order to obtain mX, a preliminary calcu-

lation of mA is necessary. This can be done on the pure solvent

system using the techniques described in Section 2.15.3.3.3.
2.15.3.3.7 Volume of mixing
It is often interesting to study the change of volume of a

solution as a function of the concentration of solute. To this

end, it is useful to express the volume of the system as the

partial derivative of the Gibbs free energy with respect to pres-

sure, taken at constant temperature and number of particles:

V ¼ @G=@pð ÞT,NX ,NA
[65]

If we now add to the system one particle of solvent at

constant pressure, the total volume changes by uA and becomes

V+uA. We call uA the partial molar volume of the solvent. The

total Gibbs free energy is G+mA, so that according to eqn [65],

uA ¼ @mA=@pð ÞT,NX ,NA
¼ @mA=@pð ÞT,cX where the last equality

stems from the fact that mA only depends on NX and NA

through the molar fraction cX (we assume here that cX does

not change when we add one particle of solvent to the system;

this is obviously true if the number of atoms of solvent NA is

already very large.). The partial volume in general depends

on cX, p, and T, but under the assumption of ideality,

uA ¼ @m0A=@p
� �

T,cX
, and it depends only on p and T. In an

ideal solution, uA is the same as in the pure solvent.

Similarly, the partial molar volume of the solute is

uX ¼ @mX=@pð ÞT,cX , which becomes independent on cX under

the assumption of ideality. Notice that this is not in general

equal to the partial volume of the pure solute.

As an example of the calculation of partial molar volumes,

we mention the partial molar volumes of iron and X, with X

being either sulfur or silicon or oxygen, obtained by Alfè et al.

(2002d) in a binary mixture of iron at the conditions men-

tioned above of p¼370 GPa and T¼7000 K. These were

uFe¼6.97 Á̊3, uSi¼6.65 Á̊3, uS¼6.65 Á̊3, and uO¼4.25 Á̊3.

Although ideality was not assumed in these calculations, the

partial molar volumes of Si, S, and O were found to be rather

independent from their concentration in liquid Fe. It is inter-

esting to note that both sulfur and silicon have a partial molar

volume that is very similar to that of iron, while oxygen is

significantly smaller. This is the main reason of the large dif-

ference in the behavior of sulfur and silicon on the one side

and oxygen on the other and the resulting partitioning of

oxygen between solid and liquid iron (see the succeeding text).
2.15.3.3.8 Solid liquid equilibrium
We want to study now the conditions that determine equilib-

rium between solid and liquid and in particular how the solute

partitions between the two phases and how this partitioning

affects the melting properties of the solution. Thermodynamic

equilibrium is reached when the Gibbs free energy of the

system is at its minimum, and therefore, 0¼dG¼d(Gl +Gs),

where superscripts ‘s’ and ‘l’ indicate quantities in the solid

and the liquid, respectively. In a multicomponent system, the

Gibbs free energy can be expressed in terms of the chemical

potentials of the species present in the system (Mandl, 1997;

Wannier, 1966):
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G¼
X
i

Nimi [66]

Using eqn [66] and the Gibbs–Duhem equation [58], we

obtain

dG¼
X
i

midNi [67]

If the system is isolated, particles can only flow between the

solid and the liquid, and we have dNi
s¼�dNi

l, which implies

dG¼
X
i

dNi mli�msi
� �

[68]

If mi
l<mi

s, there will be a flow of particles from the solid to

the liquid region (dNi>0), so that the Gibbs free energy of the

system is lowered. The opposite will happen if mi
l>mi

s. The flow

stops at equilibrium, which is therefore reached when mi
l¼mi

s.

In particular, in our two components system, equilibrium

between the solid and liquid implies that the chemical poten-

tials of both the solvent and solute are equal in the solid and

liquid phases:

msX p, Tm, c
s
X

� �¼ mlX p, Tm, c
l
X

� �
msX p, Tm, c

s
X

� �¼ mlA p, Tm, c
l
X

� � [69]

where Tm is the melting temperature of the solution at pressure

p. Using eqn [55], we can rewrite the first of the two equations

in the preceding text as

emsX p, Tmð Þ + kBTm lncsX ¼ emlX p, Tmð Þ + kBTm lnclX [70]

From which, we obtain an expression for the ratio of con-

centrations of solute between the solid and the liquid:

csX=c
l
X ¼ exp emlX p, Tmð Þ�emsX p, Tmð Þ

h i
=kBTm

n o
[71]

In general, emlX < emsX , because the greater mobility of the

liquid can usually better accommodate particles of solute,

and therefore, their energy (chemical potential) is lower. This

means that the concentration of the solute is usually smaller in

the solid.

Equation [71] was used by Alfè et al. (2000c, 2002c,d) to

put constraints on the composition of the Earth’s core. The

constraints came from a comparison of the calculated density

contrast at inner-core boundary and that obtained from seis-

mology, which is between 4.5�0.5% (Masters and Shearer,

1990) and 6.7�1.5% (Masters and Gubbins, 2003). This den-

sity contrast is significantly higher than that due to the crystal-

lization of pure iron and therefore must be due to the

partitioning of light elements between the solid and liquid.

Alfè et al. (2000c, 2002c,d) considered sulfur, silicon, and

oxygen as possible impurities and using first principles

obtained the partitions for each impurity. The calculations

showed that for both sulfur and silicon, emlX and emsX are very

similar, which means that cX
s and cX

l are also very similar,

according to eqn [71]. As a result, the density contrast of a

Fe/S or a Fe/Si system is not much different from that of pure Fe

and still too low when compared with the seismological data.

By contrast, for oxygen, emlo and emso are very different, and the

partitioning between the solid and liquid is very large. This

results in a much too large density contrast, which also does

not agree with the seismological data. These results are
summarized in Figure 13. The conclusion from these calcula-

tions was that none of these binary mixtures can be viable for

the core. The density contrast can of course be explained by

ternary or quaternary mixtures. Assuming no cross correlated

effects between the chemical potentials of different impurities

and based on the seismological density contrast of 4.5�0.5%

(Masters and Shearer, 1990), Alfè et al. (2002c,d) proposed an

inner core containing about 8.5% of sulfur and/or silicon and

almost no oxygen and an outer core containing about 10% of

sulfur and/or Si and an additional 8% of oxygen. The more

recent seismological datum of 6.7�1.5% (Masters and

Gubbins, 2003) would change the estimate of the core com-

position to an inner core containing about 7% of sulfur and/or

silicon and still almost no oxygen and an outer core containing

about 8% of sulfur and/or Si and an additional 13% of oxygen.

One consequence of the large partitioning of oxygen between

the solid and liquid is that as the solid core grows, it expels

oxygen in the liquid, which by converting its gravitational

energy helps driving the convective motions that are



The Ab Initio Treatment of High-Pressure and High-Temperature Mineral Properties and Behavior 389
responsible for the generation of the Earth’s magnetic field

(Gubbins et al., 2004).

2.15.3.3.9 Shift of freezing point
The partitioning of the solute between the solid and the

liquid is generally responsible for a change in the melting

temperature of the mixture with respect to that of the pure

solvent. To evaluate this, we expand the chemical potential

of the solvent around the melting temperature of the pure

system, Tm
0 :

mA p, Tm, cXð Þ¼ mA p, T0
m, cX

� �� s0AdT + . . . [72]

where dT¼ Tm�T0
m

� �
and s0A ¼� @mA=@Tð ÞT¼T0

m
are the entropy

of the pure solvent at Tm
0 . We now impose continuity across the

solid/liquid boundary:

m0sA p, T0
m

� �� s0sA dT�kBTmc
s
X ¼ m0lA p, T0

m

� �� s0lA dT�kBTmc
l
X [73]

where we have considered only the linear dependence of mA on

cX (see eqn [61]). Noting that mA
0s(p,Tm

0 )¼mA
0l(p,Tm

0 ), we have

dT¼ kTm

s0lA � s0sA
csX � clX
� �

[74]

Since usually cX
s < cX

l , there is generally a depression of the

freezing point of the solution.

Using eqn [74] and the composition estimated from the

density contrast of 4.5%, Alfè et al. (2002c,d) estimated a

depression of about 600–700 K of the melting temperature of

the core mixture with respect to the melting temperature of

pure Fe, and they suggested an inner-core boundary tempera-

ture of about 5700 K. This estimate would go down by a further

300 K if the latest estimate of 6.7% for the density contrast at

ICB was used (Masters and Gubbins, 2003), which would

therefore result in a temperature at the ICB of about 5500 K.

2.15.3.3.10 Electrical and thermal conductivity
Electrical and thermal conductivities of materials can be calcu-

lated from first principles. In particular, in the context of DFT,

the frequency-dependent electrical conductivity can be calcu-

lated by using the Kubo–Greenwood formula (Kubo, 1957;

Greenwod, 1958), which for a particular k-point in the BZ of

the simulation supercell and for a particular configuration of

the ions {RI} reads

sk o; RIð Þ¼ 2pe2ℏ2

3m2oO

Xn
i, j¼1

X3
a¼1

F ei,kð Þ�F ej,k
� �� �j Cj,kjrajCi,k

� �j2d
ej,k� ei,k�ℏo
� �

[75]

where o is the angular frequency; e and m are the electron

charge and mass, respectively; ℏ is the Plank’s constant divided

by 2p; O is the volume of the simulation cell; and n is the

number of Kohn–Sham states. The a sum runs over the three

spatial directions. Ci,k is the Kohn–Sham wave function corre-

sponding to eigenvalue e i,k, and F ei,kð Þ is the Fermi weight. The

d function is represented by a Gaussian, with a width chosen to

be roughly equal to the average spacing between the eigen-

values weighted by the corresponding change in the Fermi

function (Desjarlais et al., 2002). In a liquid or in a solid

above zero temperature, the frequency-dependent conductivity

is obtained by taking the thermal average:
s oð Þ¼
X
k

sk o; RIð ÞW kð Þ
* +

[76]

where W(k) is the weighting factor for the point k. The

dc conductivity s0 is given by the value of s(o)in the limit

o!0.

In a free electron liquid, the electronic part of the thermal

conductivity k0 and the electrical conductivity s0 are related by

the Wiedemann–Franz law (Wiedemann and Franz, 1853),

L¼k0/s0T, where L is the Lorenz number. In a real liquid, the

validity of the Wiedemann–Franz law is not necessarily

expected, and in fact, a number of exceptions for metals at

near-ambient conditions are known (see, e.g., Kittel, 1996).

However, the electronic component of the thermal conductiv-

ity k0 can be directly calculated using the Chester and Thellung

(1961) formulation of the Kubo–Greenwood formula, which

reads

k oð Þ¼ 1

e2T
L22 oð Þ�L12 oð Þ2

s oð Þ

 !
[77]

and k0 is the value of k(o) in the limit o!0. The kinetic

coefficients Llm(o) are given by Mazevet et al. (2010)

Llm oð Þ¼ �1ð Þ l +mð Þ 2pe2ℏ
2

3m2oO

Xn
i, j¼1

X3
a¼1

F ei,kð Þ�F ej,k
� �� �j Cj,kjrajCi,k

� �j2
	 ej,k�m
� � l�1ð Þ ei,k�m½ � m�1ð Þd ej,k� ei,k�ℏo

� �
[78]

where m is the chemical potential.

As an example of a recent application, I mention the first-

principles calculation of electrical and thermal conductivities

of iron and iron alloys (Pozzo et al., 2012, 2013) under the

Earth’s core conditions, which are displayed in Figure 14. The

conductivities have been calculated on three possible adiabatic

pressure–temperature profiles, anchored at the ICB tempera-

tures of 6350, 5700, and 5500 K, corresponding to the DFT

melting temperatures of pure iron and iron alloyed with sulfur,

silicon, and oxygen, as detailed in the previous section. The

values for the electrical and thermal conductivities are in the

range 1.1–1.3	106O�1 m�1 and 100–160 W m�1 K�1, respec-

tively, with the low/high values corresponding to CMB/ICB

pressure–temperature conditions.

The Lorenz parameter is roughly constant on all three adia-

bats, indicating that theWiedemann–Franz law is valid through-

out the core. For pure iron, the Lorenz parameter varies between

2.47	 l0�8 and 2.51	 l0�8 WO K�2, only slightly higher than

its ideal value of 2.44	 l0�8 WO K�2, while for the mixtures, it

is reduced in the range 2.17–2.24	 l0�8 WO K�2. These values

are in broad agreement with those recently reported by de Koker

et al. (2012).

The calculated electrical conductivities are in good agreement

with the experimental data for FeSi up to 140 GPa of Matassov

(1977) and for Fe0.94 O up to 155 GPa of Knittle et al. (1986),

who reported values in the range 1.0–1.2	 l06 O�2 m�1. The

thermal conductivities are in agreement with recent experimen-

tal findings of Hirose et al. (2011) who reported values for the

top of the outer core in the range 90–130 Wm�1 K�1.

These estimates of thermal and electrical conductivity are

two to three times higher than those previously used in

the geophysical literature (e.g., Nimmo, 2007; Stacey, 2007).
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Figure 14 (left) Adiabatic temperature profiles as function of pressure anchored by three possible ICB temperatures TICB. Black curve (FERRO)
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The high thermal conductivity in particular has significant

implications for the evolution of the core and the dynamo

process generating the Earth’s magnetic field. The convective

motions in the outer core that are responsible for the Earth’s

dynamo are driven by a combination of thermal and chemical

buoyancy sources. The strength of thermal driving is measured

by the amount of excess heat that cannot be conducted down

the adiabatic gradient; higher thermal conductivity increases

adiabatic conduction and therefore decreases the effectiveness

of thermal buoyancy relative to chemical buoyancy. Maintain-

ing the same magnetic field with less available thermal

buoyancy requires a faster core cooling rate or a higher con-

centration of radiogenic elements in the core or a combination

of the two. Moreover, a faster cooling rate implies that the

inner core, which is already thought to be a relatively young

feature of the Earth (age �1Ga; Labrosse et al., 2001), is even

younger.
2.15.4 Conclusions

I have described here some ab initio techniques, based on the

fundamental laws of quantum mechanics, that are currently

being used to study the properties of high-pressure and high-

temperature minerals. I have focused our discussion to the

formulation of quantummechanics known asDFT, with various

approximations for the XC functional, and I have shown that

this technique can predict very reliably a number of static and

elastic properties, like low-temperature equation of states, phase

transition, and elastic constants. DFT has also been successfully

used to predict the vibrational properties of a large number of

materials, and the examples provided here show that these pre-

dictions are in good agreement with the experimental data, at

both zero pressure and high pressure. To study the high-tem-

perature properties of solids and liquids, ab initio techniques
coupled with MD have been proven to be a powerful and

reliable tool for both solids and liquids. I have illustrated this

mentioning the calculation of the high-temperature elastic con-

stants of the mantle-forming minerals MgSiO3 in both the

perovskite and the recently discovered postperovskite phases

and the elastic behavior of hcp iron under the conditions of

the Earth’s inner core and the dynamic properties of liquids like

diffusion and viscosity.

A major contribution to the calculation of the ab initio

high-pressure and high-temperature properties of minerals

has been given by the possibility of calculating free energies,

and I have described how this can be done for both liquids and

solids, using the technique of thermodynamic integration. The

access to the free energies of materials has allowed the calcula-

tion of a number of thermodynamic properties. Here, I have

described the calculation of melting properties and in particu-

lar the melting curve of iron under Earth’s core conditions.

I have also shown how ab initio techniques coupled with

thermodynamic integration can be used to calculate chemical

potentials in binary solutions and illustrated the method by

showing the calculation of the chemical potentials of oxygen,

sulfur, and silicon in solid and liquid iron at the Earth’s core

conditions. These calculations were used in conjunction with

seismological data to estimate the probable composition of the

Earth’s inner and outer core. I have also shown that it has

become possible to compute transport properties like the elec-

trical and thermal conductivities, and I have mentioned recent

calculations applied to the Earth’s core.

In our description of melting properties, I have pointed out

that current XC functionals do not always provide perfect

agreement with the experiments. I have shown how the appli-

cation of empirical corrections can improve these results, but

this is not a completely satisfactory solution, as it introduces

some arbitrariness in the calculations, which do not conform

to our original definition of ab initio anymore. Therefore, it is
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important to be able to go beyond DFT, and for this, I have

mentioned QMC techniques, which I believe are sufficiently

accurate and general that they will become a major player in

the field of first-principles calculations of material properties.

The development of these techniques will be helped by the

availability of ever more powerful computers.

I have also mentioned the technique of the coexistence of

phases to calculate melting curves. This technique is intrinsi-

cally very expensive, as it needs calculations performed on

systems containing hundreds or even thousands of atoms.

However, recently, it has just become possible to apply this

technique in the context of ab initio calculations, with simula-

tions reported on up to 1728 atom cells. I have illustrated this

method with the recent calculation of the melting curve of

MgO under the Earth’s mantle conditions. The availability of

faster computers will help make this coexistence calculations

more routinely applied and possibly will also allow simulation

of the eutectic behavior of solutions, in which a liquid is in

coexistence with more than one solid phase.
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Alfè D and Gillan MJ (1998a) Physical Review B 58: 8248.
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