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We have examined the density and bulk sound velocity of liquid iron alloys, (Fe, Ni)X(H, Si, O, S, 
C)1-X, at Earth’s outer core pressure and temperature conditions based on first-principles molecular 
dynamics simulations. The nonideal mixing effects on volume and velocity were found to be negligible 
for all combinations of different liquid alloys examined. By comparing the results with seismological 
observations, we searched for possible chemical compositions for the outer core. Hydrogen is found to be 
a primary light element when the inner-core boundary temperature T ICB is 4,800 K to 5,400 K. If this is 
the case, it is suggested that a large amount of water was delivered to the Earth during its accretionary 
stage and that the present-day core temperature is relatively low. On the other hand, oxygen is the 
most important light element if T ICB = 6,000 K, consistent with the previous calculations by Badro et al. 
(2014) at T ICB = 6,300 K. To further constrain the chemical composition of the outer core, it is necessary 
to take into account other constraints besides its density and bulk sound velocity; melting temperature, 
simultaneous solubilities of multiple of light elements, and so forth.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The chemical composition of the Earth’s liquid outer core still 
remains unknown (see reviews by Poirier, 1994; Hirose et al., 
2013; Li and Fei, 2014). The Preliminary Reference Earth Model 
(PREM) deduced from seismology (Dziewonski and Anderson, 
1981) suggests that the density and the bulk sound velocity of the 
outer core is ∼10% lower and ∼5% faster than those of liquid pure 
iron, respectively (e.g., Anderson and Ahrens, 1994; Dewaele et al., 
2006; Ichikawa et al., 2014; Wagle and Steinle-Neumann, 2019). 
These differences indicate that the outer core includes substantial 
amounts of light elements such as silicon, oxygen, sulfur, carbon, 
and hydrogen, in addition to iron and nickel. In order to constrain 
the chemical composition of the outer core that is compatible with 
seismic observations, previous first-principles computational stud-
ies calculated the densities and bulk sound velocities of liquid iron 
(Alfé et al., 2002; Vočadlo et al., 2003; Ichikawa et al., 2014; Wagle 
and Steinle-Neumann, 2019) and alloys (Alfé et al., 2007; Badro 
et al., 2014; Umemoto et al., 2014; Umemoto and Hirose, 2015) 
under Earth’s core conditions. Recent high-pressure experimental 
studies also reported the density (Morard et al., 2013, 2017) and 
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velocity (Nakajima et al., 2015; Kawaguchi et al., 2017) of liquid 
iron alloys to 94 GPa, which is still lower than the core pressure 
range (>135 GPa).

The calculations by Badro et al. (2014) searched for the pos-
sible liquid core compositions in Fe-Si-O-S-C that account for the 
outer core density deficit and velocity excess with respect to pure 
iron at core-mantle boundary (CMB) and inner core boundary (ICB) 
conditions, and argued that oxygen is an important core light el-
ement. However, they did not consider the effect of hydrogen. 
Recent planet formation theories suggest that an extensive amount 
of water may have been brought to the Earth in its accretion stage 
(e.g., Walsh et al., 2011; Sato et al., 2016). And, hydrogen is highly 
siderophile under pressure (Okuchi, 1997; Shibazaki et al., 2009; 
Pépin et al., 2014; Iizuka-Oku et al., 2017). This has been chal-
lenged by the metal-silicate partitioning experiments by Clesi et 
al. (2018) and Malavergne et al. (2019). However, their claims were 
based on the presence of minor amounts of hydrogen in metal at 
1 bar. It is known that the solubility of hydrogen in solid Fe is very 
low at ambient condition; H/Fe < 10−5 (Fukai and Suzuki, 1986). 
Most of the hydrogen atoms escapes from solid iron during decom-
pression (Okuchi, 1997; Iizuka-Oku et al., 2017). The experiments 
performed by Okuchi (1997) demonstrated that more than 95% of 
H2O in a magma ocean could have been incorporated into core-
forming metals. Our previous calculations have shown that liquid 
iron alloyed with 1.0 wt% H reconciles both the density and the 
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sound velocity observed in the outer core (Umemoto and Hirose, 
2015).

We report here the results of first-principles molecular dynam-
ics on binary liquid iron alloys containing silicon, oxygen, sulfur, 
carbon, and hydrogen at outer core conditions. Nonideal mixing 
effect is also examined in ternary and quaternary alloy systems. 
Using them, we estimate the density and bulk sound velocity of 
liquid iron alloyed with multiple light elements along geotherms 
and compare them with the PREM profiles to constrain the chem-
ical composition of the outer core.

2. Computational method

We performed first-principles molecular dynamics (FPMD) cal-
culations using pseudopotentials within the density-functional 
theory with 128 atoms in fixed cubic cells corresponding to 
∼100–350 GPa. The procedures of FPMD for these liquid alloys 
were the same as in our previous study (Umemoto and Hirose, 
2015). We performed FPMD at 10,000 K for 2 picoseconds to 
obtain a liquid structure, which was confirmed from radial distri-
bution function and mean square displacements. Then, the cell was 
quenched to a target temperature (4,000 to 7,000 K) and allowed 
to equilibrate for 2 picoseconds. Finally, FPMD was performed for 
10 picoseconds or longer to calculate pressure and energy by tak-
ing their averages over time. The temperature was controlled using 
a Nosé-Hoover thermostat (Nosé, 1984; Hoover, 1985). Time steps 
were 1 (or 2) femtosecond at 10,000 K for generating a liquid 
structure, and 0.5 (or 1) femtosecond at target temperature where 
pressure and energy were calculated for Fe alloys containing hy-
drogen (or without hydrogen). The pseudopotentials for all atomic 
species were generated using Vanderbilt’s method (Vanderbilt, 
1990). A Perdew-Burke-Ernzerhof (PBE)-type generalized-gradient 
approximation (GGA) functional was used for exchange-correlation 
(XC) potential (Perdew et al., 1996). The electronic configurations 
for pseudopotential generation were 3s23p63d6.54s14p0 for iron, 
3s23p63d84s24p0 for nickel, 1s1 for hydrogen, 2s22p4 for oxy-
gen, 3s23p1 for silicon, 3s23p4 for sulfur, and 2s22p2 for carbon. 
The cutoff radii were 1.8 a.u. for iron, 1.7 a.u. for nickel, 0.5 a.u. 
for hydrogen, 1.4 a.u. for oxygen, 1.6 a.u. for silicon, 1.7 a.u. for 
sulfur, and 1.3 a.u. for carbon (1 a.u. = 0.529177 Å). Thermal ex-
citation of electrons was taken into account by the Fermi-Dirac 
distribution. Γ point sampling was used. The cutoff energy for the 
plane-wave expansion was 30 Ry. Pressure was found to converge 
within 1 GPa, with respect to the number of atoms in a supercell, 
k-point sampling, and plane-wave cutoff energy. Uncertainty in 
pressure in each simulation was less than 0.5 GPa, indicating that 
the present simulation time was long enough. Calculations have 
been carried out using the Quantum-ESPRESSO package (http://
www.quantum -espresso .org) (Giannozzi et al., 2009) with a modi-
fication to use the Nosé-Hoover thermostat (Sun et al., 2014).

3. Results

We fit the third-order Birch-Murnaghan equation of state (EOS) 
to the calculated isothermal pressure-volume (P-V) relations to ob-
tain isothermal bulk modulus (KT). Thermal pressure (P th) and 
total energy (E) are fitted by a quadratic function to calculate 
Grüneisen parameter, γth = V

C V

(
∂ Pth
∂T

)
V

, where CV (=
(

dE
dT

)
V

) is 
heat capacity at a fixed volume. Then, compressional velocity 
(V P), equivalent to bulk sound velocity for liquid, is calculated by 
V P = √

K S/ρ , where KS is adiabatic bulk modulus obtained from 
KT as KS = (1 + αγ th T ) KT; α is thermal expansivity, given by 
α = 1

KT

(
∂ P
∂T

)
V , ρ represents density, and T is temperature. For 

pressure and temperature at which the system was not a liquid 
state during simulations, these quantities were obtained by extrap-
olation from data collected at higher temperatures. Fig. 1 illustrates 
ρ and V P as functions of pressure and temperature for pure iron 
and binary alloys investigated. The results for pure Fe and Fe-H al-
loys are from our previous study (Umemoto and Hirose, 2015). The 
dependence of V P(P ) on temperature is very small at a given pres-
sure for all liquids investigated here. Both bulk modulus (Fig. S1a) 
and density decreases with increasing temperature, and resultant 
V P (P ) hardly depends on temperature. When V P is represented 
as a function of density, on the other hand, the dependence of V P
(ρ) on temperature is not small (Fig. S1b). It indicates that the 
Birch’s law, an empirical law for solids predicting a linear relation 
between ρ and V P, does not hold for liquid pure Fe and liquid al-
loys considered here.

By interpolating data of the present isothermal calculations at 
4,000 K, 5,000 K, 6,000 K, and 7,000 K, we obtain the ρ and V P
of liquid pure Fe64 and binary alloys, Fe76H52, Fe104Si24, Fe100O28, 
Fe100S28, and Fe100C28, along geotherms (Table S1). The geotherms 
are obtained by integrating the equation, 

(
∂ log T
∂ logρ

)
S

= γth with as-

sumed ICB temperature (T ICB), which corresponds to the liquidus 
temperature of the outer core liquid at the ICB pressure. 6,000 K 
should be the upper bound on T ICB, considering the melting tem-
perature of pure Fe that was determined both computationally and 
experimentally to be 5,500–6,300 K at 330 GPa (Alfé et al., 2002; 
Alfé, 2009; Anzellini et al., 2013; Sinmyo et al., 2019) and the de-
pression of melting point by impurity elements. On the other hand, 
the melting temperature of Fe-H is much lower than that of Fe 
(Sakamaki et al., 2009), and the T ICB could be as low as 4,800 K 
(Nomura et al., 2014). Therefore we employ 4,800 K for the lower 
bound on T ICB. Also we use 5,400 K that is often considered the 
typical T ICB (Hirose et al., 2013).

From Table S1, we estimate the V and V P of (Fe, Ni)X(H, Si, 
O, S, C)1-X along the three geotherms by ideal mixing (Rivers 
and Carmichael, 1987); V = ∑

i xi V i, KT =
∑

i xi V i∑
i xi V i/KT,i

, KS = (1 +
αγthT )KT, and, where V i and K T,i are the volume and KT of each 
binary alloy. In order to check the validity of such ideal mixing 
for both volume and velocity, we have calculated the V and V P
of Fe-Si-O-H alloys, Fe87Si1O12H28 and Fe98Si16O2H12, whose Si 
and O concentrations are close to those proposed for the outer 
core composition by Siebert et al. (2013) and Fischer et al. (2015), 
respectively. We also calculated those for liquid Fe94S13H21 and 
Fe88C14H26. The results show that differences in V and V P be-
tween the estimates obtained by ideal mixing and by the calcula-
tions in ternary or quaternary systems are at most 0.3% and 0.8% 
in V and V P, respectively, at relatively low pressures near the CMB 
condition and tend to be even smaller at higher pressures (Fig. 2). 
It indicates that the nonideal mixing effect is negligible on both 
volume and velocity and mixing behavior is more close to ideal 
one at higher pressures.

Fig. 3 illustrates the effect of each impurity element, Ni, H, Si, O, 
S, and C, on ρ and V P at 330 GPa and T ICB = 4,800 K, 5,400 K, and 
6,000 K and at 136 GPa and the corresponding CMB temperatures. 
As expected, higher concentration of each light element gives rise 
to lower ρ and higher V P, while nickel has opposite effects. Note 
that nickel exhibits a certain effect on V P but affects ρ to a minor 
extent. Hydrogen shows the smallest effect on the reduction in ρ
per at% impurity concentration and is followed by carbon. These 
results for ρ are consistent with the previous calculations by Badro 
et al. (2014), although they did not examine the effect of hydrogen. 
On the other hand, Badro et al. (2014) reported that the increase 
in V P per at% impurity concentration is the strongest for silicon 
followed by carbon and sulfur, while our data show carbon has 
the largest effect and is followed by silicon.

The radial pair distribution functions (gαβ ) for binary liquid al-
loys are shown in Fig. 4. Since Fe-Fe peak positions are close to 
each other between different alloys, the effect of light element on 
ρ should be stronger when it substitutes Fe atom rather than oc-

http://www.quantum-espresso.org
http://www.quantum-espresso.org
rtronnes
Highlight

rtronnes
Highlight



K. Umemoto, K. Hirose / Earth and Planetary Science Letters 531 (2020) 116009 3

Fig. 1. Densities and bulk sound velocities calculated at 4,000–7,000 K for pure Fe and binary alloys. White circles denote those of the PREM model. Pressure is not adjusted. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
cupies interstitial sites. In the Fe-Si alloy, being similar to the case 
of the Fe-Ni alloy, the peak positions of Fe-Fe, Si-Si, and Fe-Si are 
almost identical to each other, suggesting that incorporation of Si 
atoms in liquid Fe is substitutional. On the other hand, in the Fe-H 
alloy, the Fe-H peak position is located at much smaller radial dis-
tance and gHH does not show a clear peak, implying that H atoms 
are distributed almost randomly among Fe atoms and incorpora-
tion of H atoms in liquid Fe is interstitial. A greater deviation of 
the Fe-X peak position from the Fe-Fe one indicates a stronger in-
terstitial character, leading to a smaller effect on ρ per a given 
atomic concentration.

Fig. 5 compares our calculated density of pure Fe with previous 
calculations (Ichikawa et al., 2014; Badro et al., 2014) and exper-
iments (Brown and McQueen, 1986; Anderson and Ahrens, 1994). 
At all pressures, our densities calculated are higher than those by 
the earlier calculations, while the present compression curves are 
nearly parallel to those of Ichikawa et al. (2014); their calculations 
performed at ∼1,000 K lower temperatures are consistent with 
ours. Our curves show good agreement with the shock-wave com-
pression data by Brown and McQueen (1986) and the EOS param-
eterized by Anderson and Ahrens (1994) using their data at higher 
pressures, while there is considerable difference between ours and 
Anderson and Ahrens’s EOS at lower pressures (below ∼250 GPa). 
On the other hand, the curves obtained by Ichikawa et al. (2014)
show smaller deviations from Anderson and Ahrens’s than ours 
at relatively low pressures, but disagreement becomes greater at 
higher pressure. Since the other previous calculations (Vočadlo et 
al., 2003; Wagle and Steinle-Neumann, 2019) also showed some 
deviations from experimental compression curves, these deviations 
may be intrinsic to DFT-GGA-based FPMD simulations; a better XC 
functional could address this issue in the future. In order to con-
strain the chemical composition of the outer core by comparing 
calculation and seismic observation, we apply pressure correction 
to reproduce experimental results. To do this, we introduce a pres-
sure adjustment, �P AA; �P AA(P calc, T ) = P AA(ρ ,T) − P calc(ρ , T ), 
where P AA and P calc are pressures on Anderson-Ahrens’s and our 
calculated compression curves at ρ and T . The �P AA strongly de-
pends on pressure and temperature; it decreases with pressure and 
increases with temperature (Fig. 5, inset). Hereafter, we apply pres-
sure adjustment by replacing P calc with P calc + �P AA.

4. Discussion

Now we have ingredients to constrain the chemical composition 
of the outer core. We searched for the possible range of the liq-
uid core composition in Fe + Ni + three different light elements, 
which accounts for both ρ and V P in the PREM model, when con-
sidering ±1 GPa for pressure, ±0.3% for ρ , and ±0.8% for V P for 
errors in the present calculations and the 2σ uncertainties in ρ
and V P in seismological observations given in Masters and Gubbins 
(2003). Fig. 6 shows the range of possible outer core compositions 
at each T ICB. Here we assume Fe/Ni = 16 (weight basis), based on 
the Fe/Ni ratios in chondritic meteorites and in the mantle (Mc-
Donough and Sun, 1995).

All candidates except carbon could be a single light element in 
the core. When T ICB = 6,000 K, the maximum concentration of 
each light element compatible with the density and velocity of the 
outer core is 0.89 wt% (33.2 at%) H, 7.6–7.9 wt% (22.4–23.1 at%) 
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Fig. 2. Difference in volume (�V ) and bulk sound velocity (�V P) between estimates 
based on ideal mixing of those of end-members and calculations in ternary and 
quaternary systems. T ICB = 5,400 K. Pressure is not adjusted.

O, 8.4–8.7 wt% (15.5–16.0 at%) Si, and 12.0–12.8 wt% (19.3–20.4 
at%) S, respectively. As T ICB decreases, the density of pure liquid 
iron along the geotherm increases, and thus the maximum con-
centration of each light element increases. With the likely T ICB =
5,400 K, we found 0.96–0.99 wt% (35.0–35.7 at%) H, 8.4–8.9 wt% 
(24.3–25.4 at%) O, 9.3–9.8 wt% (16.9–17.7 at%) Si, and 13.3–14.4 
wt% (20.9–22.7 at%) S. With T ICB = 4,800 K, it is 1.05–1.12 wt% 
(37.0–38.6 at%) H, 8.9–9.9 wt% (25.5–27.7 at%) O, 10.0–10.4 wt% 
(18.1–18.8 at%) Si, and 14.3–15.0 wt% (22.6–23.6 at%) S. Contrary 
to the other light elements, carbon cannot be a single core light 
element (always requires the other light element). The maximum 
carbon concentration is found in Fe-C-H and decreases as T ICB de-
creases; 4.2 wt% (15.2 at%) with 0.26 wt% (10.8 at%) H for T ICB =
6,000 K, 3.3 wt% (11.2 at%) with 0.48 wt% (19.0 at%) H for T ICB =
5,400 K, and 2.6 wt% (8.1 at%) with 0.68 wt% (25.5 at%) H for T ICB
= 4,800 K. In addition, we also explored the possible outer core 
compositions by changing the concentration of nickel; Fe/Ni = 16 
(weight basis) in Fig. 6, while Fe/Ni = 10 and no nickel in Fig. S2. 
With increasing the nickel content, main features do not change, 
although the possible range becomes larger.

We search for the “best” estimate of the outer core composi-
tion that is the most compatible with the PREM; it minimizes � =∑

i

{(
Pρ,calc,i−PPREM,i

�Pρ,i

)2 +
(

P VP,calc,i−PPREM,i

�P VP,i

)2
}

, in which P ρ(VP),calc,i

− P PREM,i is the difference in pressure between the pressure of 
calculation and that in the PREM model for a given ρi (or V Pi), and 
�Pρ(V P),i is 2σ uncertainty in pressure in seismological observa-
tions (Masters and Gubbins, 2003). First, we optimize the concen-
trations of all light elements to minimize � (Case 1 in Table 1). 
The “best” estimate strongly depends on T ICB. When T ICB = 6,000 
K, it includes oxygen as a primary light element (6.6 wt%, 20.4 
Table 1
Liquid composition (wt%) that gives the smallest deviations in density and velocity 
from the PREM at T ICB =4,800–6,000 K. Fe/Ni = 16 (weight basis).

Case 1: Concentrations optimized for all light elements

T ICB Fe Ni H Si O S C

6000 K 87.3 5.45 0.08 0.0 6.6 0.3 0.3
5400 K 90.4 5.65 0.64 0.3 2.4 0.6 0.0
4800 K 93.1 5.82 1.08 0.0 0.0 0.0 0.0

Case 2: Concentrations optimized for all light elements except sulfur (S =
2.3 wt% fixed)

T ICB Fe Ni H Si O S C

6000 K 86.8 5.42 0.12 0.0 5.4 2.3 0.0
5400 K 90.7 5.67 0.76 0.0 0.60 2.3 0.0
4800 K 91.1 5.69 0.90 0.0 0.0 2.3 0.0

Case 3: No hydrogen: concentrations optimized for all the other light elements

T ICB Fe Ni H Si O S C

6000 K 86.2 5.39 0 0.0 6.9 1.5 0.0
5400 K 85.9 5.37 0 0.0 8.1 0.6 0.0
4800 K 86.6 5.35 0 0.0 9.0 0.0 0.0

at%) with tiny amounts of hydrogen, sulfur, and carbon. As T ICB de-
creases, hydrogen concentration increases while oxygen decreases. 
When T ICB = 4,800 K, hydrogen only (1.08 wt%, 35.6 at%) is the 
“best” estimate. Although silicon and sulfur can be a sole light el-
ement compatible with the PREM within errors, their amounts in 
the “best” estimate are nearly negligible. This is because the ef-
fects of silicon and sulfur on sound velocity is stronger than those 
of hydrogen and oxygen (Fig. 3), leading to a larger difference in 
sound velocity from the PREM. Therefore, our results suggest that 
the most preferable light element in the outer core is oxygen for 
higher T ICB like 6,000 K and hydrogen for lower T ICB (5,400 K–
4,800 K). Nevertheless, it is natural to expect some sulfur in the 
core from geochemical considerations. When sulfur concentration 
is assumed to be 2.3 wt% (Allègre et al., 1995), the concentrations 
of oxygen for T ICB = 6,000 K and 5,400 K and hydrogen for T ICB
= 4,800 K are reduced (Case 2 in Table 1).

For comparison, the outer core composition that minimizes �
without hydrogen is searched (Case 3 in Table 1). For all T ICB, oxy-
gen concentration is the highest when hydrogen is absent; a small 
amount of sulfur is found for T ICB = 6,000 K and 5,400 K. In Fig. 7, 
the compositions optimized for Cases 1–3 are compared for T ICB =
5,400 K. Indeed, the density and velocity of liquid Fe + 0.76 wt% 
H + 2.3 wt% S + 0.6 wt% O (Case 2) are almost indistinguishable 
from those of the “best” estimate Fe + 0.64 wt% H + 2.4 wt% O +
Si 0.3 wt% + S 0.6 wt% S (Case 1). Note that the compositions in-
cluding hydrogen (Cases 1 and 2) show better agreement with the 
PREM than that without hydrogen (Case 3: Fe + 8.1 wt% O + 0.6 
wt% S), especially for V P.

Our result that oxygen concentration is the highest in the “best” 
estimate for T ICB = 6,000 K is consistent with the earlier calcula-
tions by Badro et al. (2014) who considered T ICB = 6,300 K. Nev-
ertheless, there are several differences between the present study 
and Badro et al. (2014). Their oxygen concentration is smaller than 
ours. This may be because their density of pure iron is smaller 
than that by Anderson and Ahrens (1994) to which our pressure is 
adjusted (Fig. 5). We found that carbon exhibits the largest effect 
on V P, while Badro and others claimed that silicon does. It might 
lead to a difference that our “best” estimate for T ICB = 6,000 K 
does not contain silicon (Table 1), while Badro et al.’s best com-
position is 3.7 wt% O and 1.9 wt% Si. Finally, the most important 
difference is that Badro et al. (2014) did not take hydrogen into 
account.

The effect of the pressure adjustment (�P AA) is significant. 
Results without the adjustment is summarized in Supplementary 
Information. As shown in Fig. S3, without the adjustment, hydro-
gen is necessary in most of the possible outer core compositions. 
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Fig. 3. Changes in density and bulk sound velocity of liquid Fe as a function of impurity concentration (at%) at CMB and ICB conditions. Dashed-dotted, solid, and dashed 
lines correspond to T ICB = 4,800 K, 5,400 K, and 6,000 K, respectively.
Fig. 4. Radial pair distribution functions (gαβ ) for binary alloys at about 200 GPa 
(pressure is not adjusted).

The “best” estimates without the adjustment are shown in Fig. S4. 
While the density and sound velocity curves with the adjustment 
are nearly parallel to the PREM (Fig. 7), those without the ad-
justment are not. Deviations of calculated ρ and V P in the “best” 
estimate without the adjustment from the PREM are rather large 
around the CMB pressure. These deviations around the CMB pres-
sure frequently do not allow liquid iron alloys without hydrogen 
to reconcile the PREM. As a result, the range of possible outer core 
compositions without the pressure adjustment is much smaller 
than that with the adjustment (Fig. S3).

5. Conclusions and future perspectives

We have constrained the range of chemical compositions in (Fe, 
Ni)X(H, Si, O, S, C)1-X that explain the density and velocity of the 
Earth’s outer core by comparing first principles calculations with 
Fig. 5. Calculated isothermal equation of state of pure Fe in this study (solid curve) 
and by Ichikawa et al. (2014) (dashed curve) at 4,000–7,000 K. They are com-
pared with data by shock experiments (Brown and McQueen, 1986) (squares) and 
parametrized experimental EOSs (Anderson and Ahrens, 1994) (dashed-dotted line). 
Black circles represent densities calculated at 136 GPa/4,300 K and 330 GPa/6,300 K 
by Badro et al. (2014). (inset) The pressure adjustment, �P AA.

the PREM model. The liquid iron alloyed with ∼0.8−1.1 wt% H, 
∼8−10 wt% O, ∼9−11 wt% Si, or ∼13−15 wt% S is compati-
ble with the observations. The liquid Fe-C does not reconcile the 
PREM. We searched the “best” estimate which minimizes the devi-
ation of the density and bulk sound velocity from the PREM. Then 
the most preferable light element has been found to be hydro-
gen when T ICB = 5,400 K–4,800 K or oxygen when T ICB = 6,000 
K. As T ICB decreases, hydrogen and oxygen concentration in the 
“best” estimate increases and decreases, respectively. For T ICB =
4,800 K, the “best” estimate contains ∼1.1 wt% H solely. If a large 
amount of hydrogen exists in the outer core, it is likely that hydro-
gen was incorporated into core metals via chemical reactions with 
H2O-bearing silicate melts in a magma ocean (Okuchi, 1997). Al-
though we searched the “best” estimate, it depends on the choice 
of pressure correction we applied. At present, it is still difficult to 
specify the chemical composition of the outer core solely based on 
comparing its density and sound velocity between theoretical cal-
culations and seismological observations.

In addition to the density and sound velocity in the outer core, 
there are other constraints that narrow down the possible range of 
the liquid core composition. The simultaneous solubilities of silicon 
and oxygen in molten iron are limited under core high P-T condi-
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Fig. 6. Possible liquid core compositions of (Fe, Ni)X(X1, X2, X3)1-X that are compatible with the PREM model at T ICB = 4,800–6,000 K. Fe/Ni = 16 (weight basis).
tions (Hirose et al., 2017) as well as at 1 bar (O’Neill et al., 1998). 
Similarly, it was reported that simultaneous solubilities of hydro-
gen and carbon in liquid iron is also limited (Hirose et al., 2019). 
The core compositions with high concentrations of both silicon and 
oxygen or both hydrogen and carbon are therefore unlikely. The 
choice of T ICB is key to the estimate of the possible liquid core 
compositions, as we have seen in the present study. Indeed, the 
T ICB is uniquely obtained from the outer core composition, since 
it corresponds to the liquidus temperature of the outer core liq-
uid at 330 GPa. The liquidus temperature of an iron alloy strongly 
depends on the light element and its concentration. Hydrogen is 
expected to reduce the melting temperature of iron to a great ex-
tent (Sakamaki et al., 2009; Nomura et al., 2014; Hirose et al., 
2019). It is supported by the present MD simulations for liquids 
Fe-H-X studied, although our simulations do not aim for deter-
mining the melting temperature precisely. Our results show that 
hydrogen must be the primary light element in the core when T ICB
is not high (∼5,400 K–4,800 K), which is consistent with its large 
effect of depressing the melting temperature of iron. The precise 
determinations of the liquidus temperatures of iron alloys, both ex-
perimentally and computationally, will be the important next step 
to further constrain the enigmatic outer core composition.
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Fig. 7. Density and bulk sound velocity along the geotherm (T ICB = 5,400 K) for our 
“best” estimate of the outer core composition with hydrogen (red: Case 1), with 
hydrogen and 2.3 wt% S (green: Case 2), and without hydrogen (blue: Case 3). Fe/Ni 
is assumed to be 16 (weight basis). Circles are from the PREM. Pressure is adjusted 
by �P AA.
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Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .epsl .2019 .116009.
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