Crystal chemistry of common mineral components

The valence state of Fe in the Fe-bearing components can easily be inferred from the charge balance. The abbreviation \mathbf{T} in the structural formulas below denotes a tetrahedral (4-coordinated) position.

Upper mantle

Feldspars

Structural formula: AT_4O_8 , where A is a large irregular position interstitial to the TO₄-tetrahedra Plagioclase: anorthite, Ca Al₂Si₂O₈ albite, Na AlSi₃O₈ Alkali feldspar: orthoclase/K-feldspar, K AlSi₃O₈ albite, Na AlSi₃O₈

Silica minerals

Structural formula: TO₂, i.e. SiO₂

Pyroxenes

Structural formula: M2 M1 T_2O_6 , where M1 is a regular octahedral position. The M2 position is an irregular position, which is 6-coordinated for the small Mg and Fe cations and 8-coordinated for the larger Ca and Na cations.

Orthopyroxene, opx: mainly enstatite, Mg₂Si₂O₆ ferrosilite, Fe₂Si₂O₆

 $\label{eq:clinopyroxene, cpx: mainly diopside, CaMgSi_2O_6 \quad hedenbergite, CaFeSi_2O_6$

but also other components like:

- jadeite, NaAlSi2O6 in high-p pyroxenes and ægirine

- acmite, NaFeSi₂O₆ in clinopyroxenes in peralkaline rocks
- Ca-tschermak's component, CaAl AlSi O₆

Olivine

Structural formula: M2 M1 TO₄, where M1 and M2 are octahedral positions

 $For sterite, Mg_2SiO_4 \quad fayalite, Fe_2SiO_4$

Garnet

Structural formula: $A_3B_2T_3O_4$, where A is an 8-coordinated position with divalent cations and B is a 6-coordinated position with trivalent cations (except in the majorite component which have 1 divalent cation + 1 Si⁴⁺ in B). In all of the garnet components, Si is the only tetrahedral cation.

 $\textit{Pyralspite garnets: pyrope, Mg_3Al_2Si_3O_{12} almandine, Fe_3Al_2Si_3O_{12} spessartine, Mn_3Al_2Si_3O_{12}}$

Ca-garnets: grossular, $Ca_3Al_2Si_3O_{12}$ and radite, $Ca_3Fe_2Si_3O_{12}$ uvarovite, $Ca_3Cr_2Si_3O_{12}$

An allocation of the ferric Fe into a component termed skiagite (Fe₃Fe₂Si₃O₁₂) is commonly used in oxygen barometry. Majorite: Mg₃MgSi Si₃O₁₂. One can also consider an Fe-equivalent majorite component: $Fe^{2+}_{3}Fe^{2+}Si$ Si₃O₁₂

Spinel group

Spinel, MgAl₂O₄ magnetite, $Fe^{2+}Fe^{3+}_{2}O_{4}$ chromite, $FeCr_{2}O_{4}$

Carbonates

Calcite, CaCO₃ dolomite, CaMg(CO₃)₂ magnesite, MgCO₃

Transition zone and lower mantle

Wadsleyite and ringwoodite High-p olivine polymorphs, spinelloid- and spinel-structured, respectively. Wds: orthorombic, Rwd: isometric (cubic). A_2TO_4 , where A includes three octahedral positions (M1, M2, M3).

Garnet. See composition and structure above. In the TZ and LM the majorite component makes up about or more than 50 mol%.

Ca-perovskite. ABO₃-compound close to CaSiO₃-composition. Near the solidus, cpv has the ideal isometric perovskite structure. At lower T, the symmetry is reduced to tetragonal.

Bridgmanite and post-bridgmanite. ABO₃-compounds, orthorombic symmetries. Dominant component: MgSiO₃. Other essential components are MgAlO_{2.5} (limited to pressures less than about 40 GPa), FeAlO₃ (ferric Fe), FeSiO₃ (ferrous Fe) and Al₂O₃.

Silica minerals (in basaltic compositions). With increasing pressure, quartz, coesite, strishovite, b-stishovite, seifertite and pyrite-structured silica.

The Ca-ferrite-structured Al-rich phase (in basaltic compositions, CF-phase). Close to the compositional join between the components (Mg,Fe)Al₂O₄ and NaAlSiO₄. Orthorombic symmetry. Below 50 GPa there might also be a hexagonal version, referred to as the "new aluminous phase" or just NAL.