

Mantle redox conditions

Carbonate related melting

Ana Anzulović

Introduction

• Schematic cross section of the Earth

Source

Redox state

- **REDOX** = type of chemical reaction in which the OXIDATION STATE changes
- Oxygen fugacity (fo₂) is a way to quantify the redox state partial pressure of oxygen
- Redox buffer = assemblage that constrains oxygen fugacity as a function of temperature it forces a certain oxygen fugacity
- iron-wüstite (IW) buffer

Redox state of the Earth's interior

- Controls the speciation of multivalent elements such as carbon (C⁰ or C⁴⁺) and iron (Fe⁰, Fe²⁺, or Fe³⁺) in minerals and melts
- Upper mantle direct measurements of fo₂
- We analyze mantle-derived rocks whose minerals contain multivalent elements
- From the ratios of the oxidized and reduced forms of these elements we could infer redox conditions at which they formed

0

2-

 \bigcirc

Atmosphere

Crust

<100 km

Upper mantle

440 km

Transition zone

660 km

Lower mantle

2+

Fe

• change in redox control from Fe³⁺/Fe²⁺ to Fe⁰–FeO

- MgSi-perovskite incorporates more Fe^{3+} at metal saturation fO_2 than majoritic garnet

The story of oxidized carbon

- Carbonate remixed into the mantle at > 150 km depth is unstable and would dissolve in the metal phase or form iron carbides depending on the Fe-C ration and P-T conditions
- Carbonate related melting is unlikely to occur in lower mantle

Subduction

Addition of subducted carbonate changes relative buffer capacity in the mantle

What happens with oxidized carbon at transition zone depth?

REDOX MELTING

- Oxidation of diamond to carbonatite melts
- Remobilization of carbon
- Potentially controls the onset of ultra-deep melting

REDOX FREEZING

- Reduction of carbonatites to diamond
- Immobilization of carbonatite melts

REDUCED FORMS OF CARBON

Redox freezing and melting

9

References

Crameri, F., G.E. Shephard, and C.P. Conrad, (2019), Platekinetics. American Mineralogist, 91(10), pp.1565-1573. (fig. Tectonics \Rightarrow , Reference Module in Earth Systems and slide 3) Environmental Sciences, Elsevier, doi:10.1016/B978-0-12-409548-9.12393-0 Shirey et al. 2012. Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75, 355-421. Dasgupta & Hirschmann, 2010. The deep carbon cycle and Stagno, V. and Fei, Y., 2020. The redox boundaries of Earth's melting in Earth's interior. Earth Planet Sci Lett 298, 1–13. interior. Elements: An International Magazine of Mineralogy, Frost & McCammon, 2008. The redox state of the Earth's Geochemistry, and Petrology, 16(3), pp.167-172. mantle. Annu Rev Earth Planet Sci 36, 389-420. Walter et al. 2011. Deep mantle cycling of oceanic crust: Hirschmann, M.M., 2021. Iron-wüstite revisited: A revisedevidence from diamonds and their mineral inclusions. calibration accounting for variable stoichiometry and theScience 334, 54-57. effects of pressure. Geochimica et Cosmochimica Acta, 313, pp.74-84. HRTEM picture of a cementite particle in steel (https://www.tf.unikiel.de/matwis/amat/iss/kap 5/illustr/i5 Rohrbach & Schmidt, 2011. Redox freezing and melting in3 3.html) the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 472, 209-212. Calcite crystals in a marble. XPL image (https://www.alexstrekeisen.it/english/meta/calcite.php) Stefan Scherrer: BSc Thesis, ZHDK – image Dynamic Mantle Iron carbide cementite image Shearer, C.K., Papike, J.J. and Karner, J.M., 2006. Pyroxene(https://en.wikipedia.org/wiki/Cementite#/media/File:Iron c europium valence oxybarometer: Effects of pyroxenearbide.jpg) composition, melt composition, and crystallization

