

Seismic Structure of the Lowermost Mantle (LLSVPs)

A Simple consideration from mineral physics aspect

Biao Wang (D.Phil. student)

Department of Earth Sciences, University of Oxford

Large Low Shear Velocity Provinces (LLSVPs)

 $V_{s}\downarrow$

 $V_s^2 = G/\rho$

Vote map, LLSVPs consistency between shear-wave tomography models (Lekic et al., 2012)

$$v_s^2 = G/\rho \quad v_s \downarrow$$

H1: G \downarrow only H2: $\rho \uparrow$ only H3: G $\downarrow + \rho \uparrow$ H4: G $\downarrow + \rho \downarrow$, but G \downarrow dominate H5: G $\uparrow + \rho \uparrow$, but $\rho \uparrow$ dominate

$$v_s^2 = G/\rho$$
 $v_s \downarrow$
 $v_p^2 = (K + 4/3G)/\rho$

H1: G \downarrow onlyH2: $\rho \uparrow$ onlyH3: G \downarrow + $\rho \uparrow$ H4: G \downarrow + $\rho \downarrow$, but G \downarrow dominateH5: G \uparrow + $\rho \uparrow$, but $\rho \uparrow$ dominate

If Hypothesis 2 is true, we should see the same degree of low v_p as v_s if we assume that v_s decrease by x because ρ increase by y (x and y are positive value): $[(1-x)v_s]^2 = G/[\rho(1+y)] \implies (1-x)^2v_s^2 = 1/(1+y)G/\rho \implies (1-x)^2 = 1/(1+y)$ If ρ increase by y, according to $v_p^2 = (K + 4/3G)/\rho$, v_p should decrease by x, same magnitude decrease as v_s

model a: $v_p -0.091\%$, $v_s -0.152\%$ model b: $v_p -0.439\%$, $v_s -0.691\%$ model c: $v_p -0.202\%$, $v_s -0.504\%$ model d: $v_p -0.169\%$, $v_s -0.479\%$ more decrease in v_s than v_p was

comparison of low velocity regions

(orange) joint tomography models

in P-wave (green) and S-wave

observed!

Garnero et al., 2016

$$v_s^2 = G/\rho$$
 $v_s \downarrow$
 $v_p^2 = (K + 4/3G)/\rho$

H1: G \downarrow only H2: $\rho \uparrow$ only H3: G \downarrow + $\rho \uparrow$ H4: G \downarrow + $\rho \downarrow$, but G \downarrow dominate H5: G \uparrow + $\rho \uparrow$, but $\rho \uparrow$ dominate

A proper model to describe LLSVPs should include a decrease in shear modulus and an increase in density

Bulk sound velocity should be considers as an important constrain: $v_{\phi}^2 = K/\rho$