Supporting Information

Torsvik et al.

Fig. S1 Kimberlite locations in Laurentia, Baltica, Siberia, Australia, Africa and China (one symbol may represent multiple kimberlite sites), and a general overview of cratons (1) older than 1 Ga. The inset shows the distribution of kimberlites (2) over Phanerozoic time, with red annotated stars denoting occurrences of large igneous provinces. Kimberlites are color coded to indicate if they were sourced by plumes from the edge of the African (red dots) or Pacific (green dots) large slow shear-wave velocity province based on our plate reconstructions (Figs. S7-36). The majority of Paleozoic kimberlites erupted between 400 and 375 Ma (Silurian and Devonian), and between 550 and 500 Ma (Cambrian).

Fig. S2. Late Cambrian reconstruction demonstrating the plume generation zone reconstruction method. We assume a degree-2 mode Earth, stable African (Tuzo) and Pacific (Jason) large slow shear-wave velocity provinces (LLSVPs), and kimberlites in South Africa (part of Gondwana) and Canada (Laurentia) sourced from plumes from their margins, the plume generation zones (3, 4). The 1% low velocity contour (thick red line) in the lowermost layer of the SMEAN tomography model (5) is a good proxy for the plume generation zones (2, 6). There are four longitude options for both Laurentia and Gondwana but our initial option is indicated by the reconstructed kimberlites (white and red dots vs. alternative white and red stars). The reconstruction here is not corrected for true polar wander. True polar wander is the motion of the geographic pole in a reference frame representative of the entire solid Earth (mantle and crust). Both the LLSVPs (mantle) and the crust are affected by true polar wander but the LLSVPs are kept fixed in the mantle in our correlative exercises (Figs. S7-26), and the motion of the continents (crust) *must* therefore be corrected for true polar wander.

Fig. S3. Workflow for calibrating Paleozoic longitude. **a**, Kimberlite locations (large green circles with black center dots) were used to calibrate continents in longitude so that they fall vertically above the SMEAN 1% low contours (the plume generation zones, PGZs, shown by

the thick red lines). In this Late Ordovician (450 Ma) example, kimberlite sites in Canada (part of Laurentia) and Siberia were fitted in longitude above a PGZ. This was our initial ('first') model. Latitude and orientation of the major plates are constrained by paleomagnetic data and the 'first' Paleozoic model attempts to produce a geologically sensible scenario conforming to the rules of plate tectonics.

b, Correlation between the reconstructed positions of Paleozoic large igneous provinces (LIPs) and the PGZs, except the Panjal (P) and Siberian Traps (ST), were used to position continents in longitude. Most kimberlites in this ideal degree-2 Earth model with no TPW were used to reconstruct the continents so that the kimberlites were directly above the PGZ but some fits were defined as a compromise between multiple kimberlite locations and reasonable plate velocities. On average kimberlites plot within 2 ± 3° from a PGZ with 98% within a distance of 10°. Annotated LIPs: K, Kalkarindji (Australia, 510 Ma); A, Altay-Sayan (Siberia, 400 Ma); Y, Yakutsk (Siberia, 360 Ma); S, Skagerrak (Europe, 297 Ma); P, Panjal Traps (India/Himalaya, 285 Ma); E, Emeishan (South China, 258 Ma); ST, Siberian Traps (Siberia, 251 Ma). LIP details in Eldholm & Coffin (8), Torsvik et al. (4, 9), Cauvet et al. (10) (Panjal Traps) and Kuzmin et al. (11) (Altay-Sayan).

c, From our first model we estimated true polar wander (TPW) using a Mesozoic model (12, 13) extended to the Paleozoic, where I_{min} is located at ~11°E and 169°W at equator (white circles denoted 1) and close to the center of the African and the near antipodal Pacific LLSVP. We identified several phases of TPW and produced the first TPW corrected reconstructions, here a 450 Ma example.

d, Reconstruction of all Paleozoic kimberlites (N=231) and LIPs (N=7) based on our first TPWcorrected model. LIPs plot within 2.4 \pm 2.1° (except the Siberian Traps) from a PGZ. Kimberlites plot on average 9 \pm 7° from a PGZ with 67% within a distance of 10°. This is unmistakably worse than our ideal starting point for a planet with no TPW (a, b) and iteration is required to improve the TPW corrected correlation (d) versus the non-corrected correlation (b). After six iterations, moving the continents in the paleomagnetic reference frame not corrected for TPW (as in (a)) eastward or westward in one million year steps we reached a good and converging correlation in the TPW-corrected frame (see main text and Fig. 2b).

Fig. S4. Paleozoic plate velocities for Africa (Gondwana). Paleozoic time-scale (14) and absolute plate velocity for a central location in Gondwana/Africa (8°N, 19°E). Plate velocity was calculated before (black line) and after (red line) true polar wander (TPW) correction. Before TPW correction, plate velocities show spikes (~15 cm/yr) in the Late Cambrian, Silurian and the Late Carboniferous; only the latter (320-310 Ma) spike remains after TPW correction, but is reduced to ~12 cm/yr. (mean velocity is 7.3 cm/yr). The star symbols show north-south velocities (after TPW correction) based on paleomagnetic inclination data alone (12); these are generally below 10 cm/yr. (average north-south velocity = 4.7 cm/yr.) for a central location in Gondwana. The blue horizontal arrows show times when the paleomagnetic data coverage from Gondwana is poor or non-existing (interpolated).

Fig. S5. a. Plate velocity for a central location in North America (57°N, 267°E, red line and average velocity of 8.6 cm/yr) and Baltica (64°N, 36°E, black line) after true polar wander (TPW) correction. Reconstructions before 430 Ma are exclusively based on paleomagnetic data from North America (Laurentia) or Baltica, a combination of North America and Baltica/Europe (Laurussia) data for the 430-320 Ma interval, and a global compilation using 'Pangean' plate-circuits after 320 Myr. Laurussia drifted eastward from the Late Devonian (10-17 cm/yr. between 370 and 310 Ma) in order to source Late Paleozoic kimberlites from the Tuzo PGZ. Note also a Late Silurian-Early Devonian (420-410 Ma) velocity spike (~17 cm/yr) shortly after the formation of Laurussia (Baltica-Avalonia merging with Laurentia); this spike but less pronounced for a geographic location in Baltica (~8 cm/yr) originates from pronounced southward motion of Laurussia (12). The solid red star symbols show Laurentia

(Laurussia/Pangea) north-south velocities (after true polar wander correction and averaging to 4.2 cm/yr) based on paleomagnetic inclination data alone (12).

b. Plate velocity for a central location in Western Australia (22°S, 135°E, red line and average velocity of 11.6 cm/yr) and Siberia (61°N, 109°E) after true polar wander correction. Australia was part of Gondwana and records the highest velocities in our Paleozoic model and the solid red star symbols show north-south velocities for Australia (after true polar wander correction and averaging to 5.0 cm/yr) based on paleomagnetic inclination data alone (12).

The red and blacks horizontal arrows above each panel show times when the paleomagnetic data coverage is poor or non-existing (interpolated). Note the poor data-coverage for Siberia after the Silurian (12). Modelled true polar wander episodes are shaded in light brown (clockwise, CW) and blue (counter-clockwise, CCW) colors.

Fig. S6. Latitude of the center of mass of continents in the paleomagnetic, longitudecalibrated frame of our Paleozoic plate model (black curve) (top diagrams in Figs. S7-36). Note the polar mean latitudes ($\geq 60^{\circ}$ S) before the Mid-Carboniferous. We also show the latitudes for a location in NW Africa (30° N, 0° E), which was located near peri-Gondwana subduction zones in the Lower Paleozoic, and the mean latitude centers for Tuzo (~16°S) and Jason (~11°S). By definition true polar wander (TPW) must take place around an equatorial location and modelled Paleozoic TPW episodes are shaded in light brown (clockwise, CW) and blue (counter-clockwise, CCW) colors.

Fig. S7. Early Cambrian reconstruction. In the top panel, continents or smaller blocks from which we have used Paleozoic palaeomagnetic data to locate the continents in latitude and orientation (Figs. S7-36) are shaded in a darker color. The lapetus Ocean started to form in the Late Precambrian and separated Laurentia (including North America, Greenland, Spitsbergen and the NW British Isles) from Baltica (northern Europe eastward to the Urals) and Gondwana (8, 15-17). Core Gondwana included Africa, South America, Arabia, India, Madagascar, West Australia and East Antarctica. Parts of Paleozoic Gondwana that are now in Europe (e.g. Avalonia (18), AV and the Armorican Terrane Assembly, ATA) and North America (e.g. Florida) are also included, and termed peri-Gondwana. The red line is 1% slow contour in the SMEAN model (5) that approximate the plume generation zone (PGZ). In the lower panels the PGZ is shown as today but in the upper panels the PGZ is rotated according to our TPW model. In all our reconstructions (Figs. S7-36), the large green circles (with a small black central dot) are one or several kimberlite locations with ages within ± 5 Ma from the reconstruction age. Some kimberlites may thus appear further away from the PGZ than we model it because the age does not fully match the reconstruction age. The top panel is our final iterated paleomagnetic model (PM) and the lower panel is the corresponding TPW

reconstruction. The number after reconstruction age and TPW is the amount of net TPW at the reconstructed time (in this case 42°; see Fig. 3). SMEAN tomographic color palette in lower panel is the same as in the as scale-bar in Figs. S2-S3. SC, South China; NC, North China; A, Annamia (Indochina); K, Kara (Northern Taimyr, Severnaya Zemlya and surrounding shelf seas); T, Tarim; S, Scotland; AA, Arctic Alaska showed together with Chukotka and Farewell (19). K-O, Kolyma and Omolon.

Fig. S8. Early Cambrian reconstruction. See Fig. S7 for legend and more information. The position of Baltica is uncertain for most of the Cambrian (poor or non-existent paleomagnetic data) and there are no known kimberlites and large igneous provinces. Based on paleomagnetic data (12), Gondwana is rotating counter-clockwise of up to 2°/Ma before true polar wander (TPW) correction).

Fig. S9. Early Cambrian reconstruction. See Fig. S7 for legend and more information.

Fig. S10. Middle Cambrian reconstruction. The Kalkarindjii (K) large igneous province (LIP) erupted at ca. 510 Ma and covers about 400,000 km² in Western Australia (20, 4). Due to only two and very different Late Cambrian and Early Ordovician poles from South China, we have not used paleomagnetic data to position it in our Cambrian and Ordovician reconstructions. We place South China as in Torsvik et al. (21), relying on faunal data, and we have added Annamia to it. In our reconstruction, the Dahongshan kimberlite in South China plots somewhat west of the PGZ but South China could potentially be moved eastward and closer to the PGZ. Here we use an age of 510 Ma (mean Rb/Sr and Sm/Nd ages) (22) but to complicate matters, a K-Ar age of 326 Ma is also reported from the Dahongshan kimberlite (23). See Fig. S7 for legend and more information.

Fig. S11. Late Cambrian reconstruction. See Fig. S7 for legend and more information.

Fig. S12. Late Cambrian reconstruction. North China kimberlites vary between 485 and 474 Ma and the most reliable ages are listed in Li et al. (24). See Fig. S7 for legend and more information.

Fig. S13. Early Ordovician reconstruction. The Rheic Ocean (Rh in top panel) opened at Cambrian-Ordovician boundary times (ca. 490 Ma) and Avalonia separated from Gondwana (Florida). The Tornquist Sea (TS in top panel) separated Baltica and Avalonia. Paleomagnetically, Baltica and Siberia are very well constrained for the Ordovician (12). Ordovician data from Gondwana and Laurentia are also mostly of reasonable quality. See Fig. S7 for legend and more information.

Fig. S14. Early Ordovician reconstruction. See Fig. S7 for legend and more information.

Fig. S15. Late Ordovician reconstruction. See Fig. S7 for legend and more information.

Fig. S16. Late Ordovician reconstruction. The Rheic Ocean is widening at the expense of the lapetus Ocean and the Tornquist Sea (TS). See Fig. S7 for legend and more information.

Fig. S17. Early Silurian reconstruction. Avalonia existed as a separate object only during the Ordovician before the closing of the Tornquist Sea to merge with Baltica at around 440 Ma, near the age of the Ordovician-Silurian boundary (25). See Figs. S7 & S16 for legend and more information.

Fig. S18. Mid Silurian reconstruction. United Baltica and Avalonia collided with Laurentia and closed the Iapetus Ocean at around 430-420 Ma (forming Laurussia) in a collision that caused the Appalachian and Caledonian orogenies (dark shading). After the collision, Laurussia drifted southward (until 400 Ma) whilst undergoing counter-clockwise rotation of up to 1.8°/Ma (12) before TPW correction. IS, Iapetus Suture. See Figs. S7 & S16 for legend and more information.

Fig. S19. Late Silurian reconstruction. No known kimberlites or large igneous provinces at this time. See Figs. S7 & S16 for legend and more information.

Fig. S20. Early Devonian reconstruction. See Figs. S7 & S16 for legend and more information.

Fig. S21. Early Devonian reconstruction. We place some new blocks on this and subsequent maps. These include KAZ, Kazakhstan; QQ, Qaidam-Qilian; HK, Hutag Uul-Songliao and Khanka-Jiamusi Bureya. At this time, the Armorican Terrane Assembly (ATA) and South China (with Annamia) had drifted off the Gondwana margin and opened the Paleotethys (P-T). A, Altay-Sayan LIP (~400 Ma) in Siberia (11). Note that kimberlites from Russia (Arkhangelsk) in this reconstruction, and in Figs. S22-23, would require a more westerly (ca. 60°) position of Laurentia. This would lead to eastward-directed velocities in excess of 20-25 cm/yr during the Carboniferous and the longitudinal calibration of Laurentia in the Devonian (Figs. S20, S22 & S24) is largely based on North American kimberlites. The position of the Armorican Terrane Assembly after the Early Devonian follows Domeier and Torsvik (26). See Fig. S7 & S16 for legend and more information.

Fig. S22. Mid Devonian reconstruction. See Figs. S7, S16 & S21 for legend and more information.

Fig. S23. Late Devonian reconstruction. Note kimberlites in Australia between 382-367 Ma (27). See Figs. S7, S16 & S21 for legend and more information.

Fig. S24. Late Devonian reconstruction. The Armorican Terrane Assembly is approaching Laurussia and the Rheic Ocean had narrowed considerable. However, there is a peculiarity in our closure model of the Rheic Ocean because Rheic appears to widen between 380 and 370 Ma. This is a consequence of compromising longitude for kimberlites in North America and Russia at 390 Ma (Fig. S22). The apparent narrowing Rheic Ocean between 380 and 370 Ma could potentially be resolved by locating 390 Ma kimberlites in North America at the extreme eastern edge of Jason (ignoring the Russian ones), and doing the same at 370 Ma (no Laurussian kimberlites at 380 Ma). Average velocity for the Armorican Terrane Assembly is 10 cm/yr after detaching from Gondwana (after 410 Ma). See Figs. S7, S16 & S21 for legend and more information.

Fig. S25. Late Devonian reconstructions. Y=Yakutsk LIP (ca. 360 Ma) in Siberia (4, 11). See Figs. S7, S16 & S21 for legend and more information.

Fig. S26. Early Carboniferous reconstruction. European sector of Rheic almost vanished. Late Devonian and Carboniferous kimberlites are lacking in Laurussia and in our Paleozoic model we shift Laurentia eastward during this time period (Figs. S25-29). See Figs. S7, S16 & S21 for legend and more information.

Fig. S27. Mid Carboniferous reconstruction. See Figs. S7, S16 & S21 for legend and more information.

Fig. S28. Mid Carboniferous reconstruction. No known kimberlites or large igneous provinces at this time. See Figs. S7, S16 & S21 for legend and more information.

Fig. S29. Late Carboniferous reconstruction. The Rheic Ocean closed in the Carboniferous, during the main Pangea growth phase, which created the Alleghenian (in North America) and the Hercynian/Variscan (in Europe) orogenic belts (grey shading). We have also shaded the Permian-Early Mesozoic Gondwanide orogen. See Figs. S7, S16 & S21 for legend and more information.

Fig. S30. Late Carboniferous reconstruction. See Figs. S7, S16 & S21 for legend and more information.

Fig. S31. Late Carboniferous reconstructions. S, Skagerrak Centred LIP in Europe (ca. 297 Ma) (9). See Figs. S7, S16 & S21 for legend and more information.

Fig. S32. Early Permian reconstruction. P, Panjal Traps (~285 Ma) in India/NW Himalaya (10, 28). See Figs. S7, S16 & S21 for legend and more information.

Fig. S33. Early Permian reconstruction. P, Panjal Traps (~285 Ma). See Figs. S7, S16 & S21 for legend and more information.

Fig. S34. Mid Permian reconstruction. See Figs. S7, S16 & S21 for legend and more information.

Fig. S35. Late Permian reconstruction. E, Emeishan LIP (~258 Ma) in South China (29, 4). See Figs. S7, S16 & S21 for legend and more information.

Fig. S36. Early Mesozoic reconstructions. ST, Siberian Traps (~251 Ma) in Siberia (30-32). QQ, Qaidam-Qilian. See Figs. S7, S16 & S21 for legend and more information.

Fig. S37. 300 Ma reconstruction compared with a Pangea B reconstruction (33) where Gondwana and Laurussia are displaced laterally (lower panel) and the transition from a Pangea B to Pangea A fit must accommodate ca. 5000 km dextral strike-slip before the Late Permian. In the Pangea B configuration, Florida would be located south of France and East of Iberia in Late Carboniferous-Early Permian times. In our Pangea B fits we have located Gondwana as in Fig. S31 and moved Laurussia westward to accommodate nearly 5000 km offset. This approach (or alternatively moving Gondwana eastward) generally leads to a poorer correlation between kimberlites and large igneous provinces with a plume generation zone. Reconstructions are in a paleomagnetic frame but the plume generation zones (1% slow in SMEAN model) are rotated according to our true polar wander model (-7^o net true polar wander at this time).

Table S1 Relative fits (250-540 Ma) of the most important Paleozoic continents/terranes versus a fixed South Africa in GPlates format (34) (www.gplates.org). South Africa (Plate Id = 701) is listed in a longitude calibrated palaeomagnetic frame (Plate Id = 1, i.e. the spin axis) and our true polar wander (TPW) model is listed in the top 13 rows. At start-up, the GPlates software defaults to a mantle frame (Plate Id = 0) and thus reconstructions will be displayed as TPW corrected (lower panels in Figs. S7-36). In order to show reconstructions with respect to the spin-axis (palaeomagnetic frame) select option "Reconstruction", sub-option "Specify Anchored Plate ID", and type 1.

Plate A	Age	EULER	ROTATION F	POLE	Plate B	Plate A Name (comment)
		Latitude⁰	Longitude°	Angle ^o		
1	250	0	0	0	0	Spin Axis (1) to Mantle (0)
1	260	0	0	0	0	Spin Axis (1) to Mantle (0)
1	280	0	11	7	0	Spin Axis (1) to Mantle (0)
1	300	0	11	7	0	Spin Axis (1) to Mantle (0)
1	350	0	11	-22	0	Spin Axis (1) to Mantle (0)
1	380	0	11	-22	0	Spin Axis (1) to Mantle (0)
1	410	0	11	-31	0	Spin Axis (1) to Mantle (0)
1	420	0	11	-31	0	Spin Axis (1) to Mantle (0)
1	430	0	11	-35	0	Spin Axis (1) to Mantle (0)
1	460	0	11	-62	0	Spin Axis (1) to Mantle (0)
1	490	0	11	-62	0	Spin Axis (1) to Mantle (0)
1	520	0	11	-42	0	Spin Axis (1) to Mantle (0)
1	550	0	11	-42	0	Spin Axis (1) to Mantle (0)
101	250	63.19	-13.87	79.87	701	North America
101	320	63.19	-13.87	79.87	701	North America
101	330	52.34	-20.01	81.57	701	North America
101	340	38.73	-15.87	86.18	701	North America
101	350	29.94	-14.54	91.05	701	North America
101	360	17.48	-18.96	111.39	701	North America
101	370	8.9	-21.96	140.86	701	North America
101	380	11.83	-25	141.71	701	North America
101	390	9.6	-25.92	142.03	701	North America
101	400	8.13	-24.99	134.63	701	North America
101	410	4.11	-23.77	122.42	701	North America
101	420	4.12	-22.16	97.99	701	North America
101	430	5.17	-27.94	81.2	701	North America
101	440	7.75	-35.54	97.98	701	North America
101	450	10.43	-38.78	108.64	701	North America
101	460	14.83	-39.68	110.99	701	North America
101	470	21.5	-44.25	93.69	701	North America
101	480	28.05	-46.77	79.07	701	North America
101	490	36.43	-59.04	63.74	701	North America
101	500	39.32	-88.75	43.9	701	North America

101	510	42.98	-66.44	25.65	701	North America
101	520	11.65	-17.25	22.38	701	North America
101	530	9.54	171.92	-43.53	701	North America
101	540	17.95	166.47	-58.08	701	North America
102	250	60.48	1.42	69.4	701	Greenland
102	320	60.48	1.42	69.4	701	Greenland
102	330	49.11	-7.55	72.39	701	Greenland
102	340	34.84	-5.18	79.73	701	Greenland
102	350	26.21	-4.67	86.48	701	Greenland
102	360	15.62	-10.41	108.92	701	Greenland
102	370	9.2	-14.45	139.77	701	Greenland
102	380	12.19	-17.49	139.67	701	Greenland
102	390	10	-18.45	140.4	701	Greenland
102	400	8.05	-17.33	133.48	701	Greenland
102	410	3.19	-15.82	122.4	701	Greenland
102	420	1.13	-13.39	98.39	701	Greenland
102	430	0.26	-18.34	81.08	701	Greenland
102	440	4.75	-26.71	96.33	701	Greenland
102	450	8.42	-30.38	105.95	701	Greenland
102	460	13.06	-31.35	107.23	701	Greenland
102	470	18.31	-35.23	88.29	701	Greenland
102	480	23.49	-36.87	72.31	701	Greenland
102	490	30.43	-48.19	54.68	701	Greenland
102	500	28.98	-78.43	32.94	701	Greenland
102	510	18.7	-45.13	16.64	701	Greenland
102	520	16.91	-178.45	-24.96	701	Greenland
102	530	21.03	-176.1	-49.28	701	Greenland
102	540	25.04	177.14	-64.58	701	Greenland
108	250	63.19	-13.87	79.87	701	Acadia
108	320	63.19	-13.87	79.87	701	Acadia
108	330	52.34	-20.01	81.57	701	Acadia
108	340	38.73	-15.87	86.18	701	Acadia
108	350	29.94	-14.54	91.05	701	Acadia
108	360	17.48	-18.96	111.39	701	Acadia
108	370	8.9	-21.96	140.86	701	Acadia
108	380	11.83	-25	141.71	701	Acadia
108	390	9.6	-25.92	142.03	701	Acadia
108	400	8.13	-24.99	134.63	701	Acadia
108	410	4.11	-23.77	122.42	701	Acadia
108	420	4.12	-22.16	97.99	701	Acadia
108	430	5.17	-27.94	81.2	701	Acadia
108	440	11.2	-36.86	92.54	701	Acadia
108	450	21.39	-34.56	92.86	701	Acadia
108	460	29.19	-31.83	96.56	701	Acadia
108	470	36.62	-25.68	91.32	701	Acadia

108	480	41.64	-10.31	83.37	701	Acadia	
108	490	43.38	-3.41	78.61	701	Acadia (Peri-Gondwana)	
108	540	43.38	-3.41	78.61	701	Acadia (Peri-Gondwana)	
109	250	63.19	-13.87	79.87	701	Florida	
109	540	63.19	-13.87	79.87	701	Florid (Peri-Gondwana)	
201	250	50	-32.5	55.08	701	Amazonia (Core Gondwana)	
201	540	50	-32.5	55.08	701	Amazonia (Core Gondwana)	
202	250	47.51	-33.3	56.2	701	Parana (Core Gondwana)	
202	540	47.58	-33.3	56.2	701	Parana (Core Gondwana)	
290	250	47.5	-33.3	57.3	701	Colorado (Core Gondwana)	
290	540	47.5	-33.3	57.3	701	Colorado (Core Gondwana)	
291	250	47.5	-33.3	63	701	Patagonia (Peri-Gondwana)	
291	260	49.12	-30.35	62.28	701	Patagonia (Peri-Gondwana)	
291	270	50.68	-27.15	61.66	701	Patagonia (Peri-Gondwana)	
291	540	50.68	-27.15	61.66	701	Patagonia (Peri-Gondwana)	
302	250	46.04	3.89	58.2	701	Baltica	
302	320	46.04	3.89	58.2	701	Baltica	
302	330	34.1	-2.57	64.85	701	Baltica	
302	340	20.86	0.32	76.07	701	Baltica	
302	350	13.46	1.19	85.23	701	Baltica	
302	360	6.41	-3.38	110.96	701	Baltica	
302	370	3.38	-6.5	143.63	701	Baltica	
302	380	6.45	-9.32	142.86	701	Baltica	
302	390	4.42	-10.34	144.34	701	Baltica	
302	400	1.82	-9.42	138.07	701	Baltica	
302	410	4.01	171.62	-128.59	701	Baltica	
302	420	8.73	173.11	-105.51	701	Baltica	
302	430	11.72	167.67	-89.36	701	Baltica	
302	440	14.27	168.23	-84.07	701	Baltica	
302	450	19.32	167.39	-72.49	701	Baltica	
302	460	28.57	168.91	-58.33	701	Baltica	
302	470	46.54	174.95	-47.21	701	Baltica	
302	480	75.11	-170.2	-47.4	701	Baltica	
302	490	77.58	37.73	-69.4	701	Baltica	
302	500	65.26	33.54	-105.39	701	Baltica	
302	510	64.93	10.76	-113.77	701	Baltica	
302	520	65.74	-22.11	-118.37	701	Baltica	
302	530	63.24	-35.9	-135.01	701	Baltica	
302	540	59.6	-37.67	-150.78	701	Baltica	
303	250	46.04	3.89	58.2	701	Scotland	
303	320	46.04	3.89	58.2	701	Scotland	
303	330	34.1	-2.57	64.85	701	Scotland	
303	340	20.86	0.32	76.07	701	Scotland	
303	350	13.46	1.19	85.23	701	Scotland	
303	360	6.41	-3.38	110.96	701	Scotland	

303	370	3.38	-6.5	143.63	701	Scotland	
303	380	6.45	-9.32	142.86	701	Scotland	
303	390	4.42	-10.34	144.34	701	Scotland	
303	400	1.82	-9.42	138.07	701	Scotland	
303	410	4.01	171.62	-128.59	701	Scotland	
303	420	8.73	173.11	-105.51	701	Scotland	
303	430	11.72	167.67	-89.36	701	Scotland	
303	440	4.92	160.65	-103.44	701	Scotland (Peri-Laurentia)	
303	450	0.07	157.66	-111.91	701	Scotland (Peri-Laurentia)	
303	460	4.54	-22.97	111.71	701	Scotland (Peri-Laurentia)	
303	470	7.08	-26.86	91.69	701	Scotland (Peri-Laurentia)	
303	480	8.92	-28.65	74.6	701	Scotland (Peri-Laurentia)	
303	490	10.71	-38.96	55.83	701	Scotland (Peri-Laurentia)	
303	500	1.5	115.95	-36.25	701	Scotland (Peri-Laurentia)	
303	510	28.48	139.21	-27.03	701	Scotland (Peri-Laurentia)	
303	520	43.27	175.34	-38.79	701	Scotland (Peri-Laurentia)	
303	530	37.42	-175.86	-62.13	701	Scotland (Peri-Laurentia)	
303	540	37.2	179.43	-78.39	701	Scotland (Peri-Laurentia)	
304	250	51.77	67.88	3.42	701	Iberia	
304	320	51.77	67.88	3.42	701	Iberia	
304	330	10.76	-166.02	-15.09	701	Iberia	
304	340	14.04	-154.13	-33.63	701	Iberia	
304	350	12.65	-153.64	-41.98	701	Iberia	
304	360	9.43	-164.23	-64.97	701	Iberia	
304	370	28.2	-144.2	-64.1	701	Iberia	
304	380	-48.1	83.3	58.9	701	Iberia	
304	390	47.3	-44.6	-88.9	701	Iberia	
304	400	44.8	-26.3	-101.8	701	Iberia	
304	410	40.5	-11.6	-113.9	701	Iberia (Peri-Gondwana)	
304	420	39.51	-6.66	-116.57	701	Iberia (Peri-Gondwana)	
304	540	39.5	-6.73	-116.57	701	Iberia (Peri-Gondwana)	
305	250	46.04	3.89	58.2	701	Armorica	
305	320	46.04	3.89	58.2	701	Armorica	
305	330	34.1	-2.57	64.85	701	Armorica	
305	340	20.86	0.32	76.07	701	Armorica	
305	350	17.03	0.83	82.86	701	Armorica	
305	360	11.58	-5.17	104.92	701	Armorica	
305	370	-2.6	175.9	-99.8	701	Armorica	
305	380	-7.2	174.1	-83.7	701	Armorica	
305	390	10.6	-4.8	61.1	701	Armorica	
305	400	16.9	2.5	39.5	701	Armorica	
305	410	-39.4	-155.5	-23.3	701	Armorica (Peri-Gondwana)	
305	420	54.59	38.4	21.52	701	Armorica (Peri-Gondwana)	
305	540	54.33	38.43	21.52	701	Armorica (Peri-Gondwana)	
315	250	46.04	3.89	58.2	701	England -Brabant	

315	320	46.04	3.89	58.2	701	England -Brabant	
315	330	34.1	-2.57	64.85	701	England -Brabant	
315	340	20.86	0.32	76.07	701	England -Brabant	
315	350	13.46	1.19	85.23	701	England -Brabant	
315	360	6.41	-3.38	110.96	701	England -Brabant	
315	370	3.38	-6.5	143.63	701	England -Brabant	
315	380	6.45	-9.32	142.86	701	England -Brabant	
315	390	4.42	-10.34	144.34	701	England -Brabant	
315	400	1.82	-9.42	138.07	701	England -Brabant	
315	410	4.01	171.62	-128.59	701	England -Brabant	
315	420	8.73	173.11	-105.51	701	England -Brabant	
315	430	11.72	167.67	-89.36	701	England -Brabant	
315	440	14.27	168.23	-84.07	701	England -Brabant	
315	450	4.5	170.29	-76.72	701	England -Brabant	
315	460	-5.19	172.56	-73.27	701	England -Brabant	
315	470	11.17	-0.94	62.97	701	England -Brabant	
315	480	13.41	16.78	53.14	701	England -Brabant (Peri-Gondwana)	
315	490	12.5	25.18	48.51	701	England -Brabant (Peri-Gondwana)	
315	540	12.5	25.18	48.5	701	England -Brabant (Peri-Gondwana)	
373	250	49.08	2.28	60.6	701	Novaya -Semya	
373	320	49.08	2.28	60.6	701	Novaya -Semya	
373	330	37.14	-4.34	66.5	701	Novaya -Semya	
373	340	23.59	-1.42	76.85	701	Novaya -Semya	
373	350	15.87	-0.56	85.51	701	Novaya -Semya	
373	360	8.01	-5.21	110.69	701	Novaya -Semya	
373	370	4.25	-8.41	143.1	701	Novaya -Semya	
373	380	7.31	-11.26	142.52	701	Novaya -Semya	
373	390	5.25	-12.27	143.85	701	Novaya -Semya	
373	400	2.77	-11.31	137.41	701	Novaya -Semya	
373	410	2.88	169.79	-127.55	701	Novaya -Semya	
373	420	7.08	171.38	-104.19	701	Novaya -Semya	
373	430	9.66	165.98	-87.82	701	Novaya -Semya	
373	440	12.06	166.58	-82.38	701	Novaya -Semya	
373	450	16.76	165.82	-70.49	701	Novaya -Semya	
373	460	25.55	167.54	-55.82	701	Novaya -Semya	
373	470	43.7	174.15	-43.9	701	Novaya -Semya	
373	480	74.27	-168.07	-43.47	701	Novaya -Semya	
373	490	77.14	32.21	-65.66	701	Novaya -Semya	
373	500	64.91	30.45	-102	701	Novaya -Semya	
373	510	64.49	7.64	-110.52	701	Novaya -Semya	
373	520	65.09	-25.16	-115.19	701	Novaya -Semya	
373	530	62.67	-38.71	-131.95	701	Novaya -Semya	
373	540	59.19	-40.36	-147.88	701	Novaya -Semya	
390	250	46.04	3.89	58.2	701	Urals (Peri-Baltic arcs)	
390	320	46.04	3.89	58.2	701	Urals (Peri-Baltic arcs)	

390	330	34.1	-2.57	64.85	701	Urals (Peri-Baltic arcs)	
401	250	47.59	3.1	59.38	701	Siberia (peri - Siberia)	
401	260	48.22	2.61	60.09	701	Siberia (peri - Siberia)	
401	270	48.84	2.13	60.82	701	Siberia (peri - Siberia)	
401	280	49.44	1.64	61.55	701	Siberia (peri - Siberia)	
401	290	50.23	1.07	62.42	701	Siberia (peri - Siberia)	
401	300	50.99	0.49	63.3	701	Siberia (peri - Siberia)	
401	310	51.74	-0.09	64.2	701	Siberia (peri - Siberia)	
401	320	52.46	-0.67	65.1	701	Siberia (peri - Siberia)	
401	330	39.38	-3.08	62.59	701	Siberia (peri - Siberia)	
401	340	22.43	4.98	67.01	701	Siberia (peri - Siberia)	
401	350	21.45	3.04	68.86	701	Siberia (peri - Siberia)	
401	360	20.9	-4.62	76.42	701	Siberia (peri - Siberia)	
401	370	20.47	-9.82	98.57	701	Siberia (peri - Siberia)	
401	380	28.43	-13.96	96.64	701	Siberia (peri - Siberia)	
401	390	35.05	-11.14	91.83	701	Siberia (peri - Siberia)	
401	400	36.84	-6.25	92.28	701	Siberia (peri - Siberia)	
401	410	41.82	2.43	86.66	701	Siberia (peri - Siberia)	
401	420	57.21	22.75	75.91	701	Siberia (peri - Siberia)	
401	430	68.26	50.31	64.91	701	1 Siberia (peri - Siberia)	
401	440	76.32	16.57	52.8	701	Siberia (peri - Siberia)	
401	450	70.32	-42.78	43.22	701	Siberia (peri - Siberia)	
401	460	52.14	-37.70	46.13	701	Siberia (peri - Siberia)	
401	470	60.25	-20.27	48.07	701	Siberia (peri - Siberia)	
401	480	76.95	11.23	52.64	701	L Siberia (peri - Siberia)	
401	490	71.96	149.46	47.95	701	Siberia (peri - Siberia)	
401	500	61.81	145.39	43.87	701	Siberia (peri - Siberia)	
401	510	56.69	100.51	46.8	701	Siberia (peri - Siberia)	
401	520	46.16	63.47	47.05	701	Siberia (peri - Siberia)	
401	530	27.04	50.1	47.5	701	Siberia (peri - Siberia)	
401	540	3.59	45.81	55.49	701	Siberia (peri - Siberia)	
501	250	29.93	42.29	-60.47	701	India (Core Gondwana)	
501	540	29.93	42.29	-60.47	701	India (Core Gondwana)	
503	250	37.11	17.11	-8.86	701	Arabia (Core Gondwana)	
503	540	37.11	17.11	-8.86	701	Arabia (Core Gondwana)	
504	250	37.07	17.13	-8.83	701	Taurides (Turkey) (Peri-G.)	
504	540	37.07	17.13	-8.83	701	Taurides (Turkey) (Peri-G.)	
505	250	52.83	-11.13	7.73	701	Alborz (Iran) (Peri-Gondwana)	
505	260	18.37	32.21	-3.18	701	Alborz (Iran) (Peri-Gondwana)	
505	270	35.34	17.69	-7.89	701	Alborz (Iran) (Peri-Gondwana)	
505	540	35.34	17.69	-7.89	701	Alborz (Iran) (Peri-Gondwana)	
506	250	25.23	69.03	-55.07	701	Afghan (Peri-Gondwana)	
506	260	26.61	60.32	-61.61	701	Afghan (Peri-Gondwana)	
506	270	27.04	55.58	-66.03	701	Afghan (Peri-Gondwana)	
506	280	27.08	53.73	-67.75	701	Afghan (Peri-Gondwana)	

506	290	27.09	52.84	-68.62	701	Afghan (Peri-Gondwana)	
506	540	27.09	52.84	-68.62	701	Afghan (Peri-Gondwana)	
563	250	27.91	45.28	-58.22	701	Tethys Himalayan(GI)	
563	270	28.24	44.8	-58.56	701	Tethys Himalayan(GI)	
563	280	-28.88	-136.11	59.25	701	Tethys Himalayan(GI)	
563	290	-29.12	-136.58	59.59	701	Tethys Himalayan(GI)	
563	540	-29.12	-136.58	59.59	701	Tethys Himalayan(GI)	
564	250	-29.93	-137.71	60.46	701	Lesser Himalayan(GI)	
564	540	-29.93	-137.71	60.46	701	Lesser Himalayan(GI)	
581	250	-37.06	-162.86	8.82	701	Pontides (Turkey)	
581	540	-37.06	-162.86	8.82	701	Pontides (Turkey)	
582	250	-52.83	168.86	-7.73	701	Sanand (Iran)	
582	260	-18.38	-147.79	3.17	701	Sanand (Iran)	
582	270	-35.35	-162.28	7.89	701	Sanand (Iran)	
582	540	-35.35	-162.28	7.89	701	Sanand (Iran)	
583	250	31.56	-105.38	-105.38	701	Lut	
583	260	-30.15	-121.24	112.63	701	Lut	
583	270	-29.41	-123.44	116.35	701	Lut (Peri-Gondwana)	
583	540	-29.41	-123.44	116.35	701	Lut (Peri-Gondwana)	
599	250	14.56	110.76	48.2	701	Sibumasu south	
599	260	5.02	105.57	68.7	701	Sibumasu south	
599	270	-1.95	-76.03	-79.45	701	Sibumasu south (Peri-Gondwana)	
599	540	-1.95	-76.03	-79.45	701	Sibumasu south (Peri-Gondwana	
601	250	23.87	130.2	-71.99	701	North China	
601	260	31.33	124.88	-76.03	701	North China	
601	270	37.09	120.13	-87.45	701	North China	
601	280	44.71	117.46	-98.11	701	North China	
601	290	43.96	112.1	-103.25	701	North China	
601	300	43.2	109.46	-106.39	701	North China	
601	310	47.21	108.32	-110.85	701	North China	
601	320	50.76	111.26	-121.28	701	North China	
601	330	52.88	111.21	-122.52	701	North China	
601	340	-58.02	-61.02	123.54	701	North China	
601	350	57.23	122.22	-121.37	701	North China	
601	360	54.77	130.04	-122.23	701	North China	
601	370	54.81	149.28	-130.31	701	North China	
601	380	50.98	146.36	-130.91	701	North China	
601	390	52.34	145.65	-128.95	701	North China	
601	400	53.08	139.49	-121.55	701	North China	
601	410	55.94	130.09	-118.91	701	North China	
601	420	50.14	118.18	-118.36	701	North China	
601	430	44.63	110.81	-127.58	701	North China	
601	440	45.01	110.02	-144.79	701	North China	
601	450	46.54	113.3	-158.29	701	North China	
601	460	-49.64	-58.18	161.48	701	North China	

601	470	50.05	125.75	-153.16	701	North China
601	480	46.76	120.48	-144.04	701	North China
601	490	36.08	109.76	-148.18	701	North China
601	500	32.54	105.78	-151.47	701	North China
601	510	40.37	104.68	-146.81	701	North China
601	520	50.59	100.5	-153.98	701	North China
601	530	54.17	88.76	-168.61	701	North China
601	540	58.81	81.38	-175.06	701	North China
602	250	53.52	-99.21	37.09	701	South China
602	260	41.85	-103.27	40.51	701	South China
602	270	60.25	-175.17	39.8	701	South China
602	280	60.92	164.36	30.78	701	South China
602	290	56.92	168.31	31.11	701	South China
602	300	53.62	164.62	29.94	701	South China
602	310	49.96	161.26	28.91	701	South China
602	320	45.23	141.21	25.42	701	South China
602	330	42.25	140.57	25.53	701	South China
602	340	39.29	140	25.7	701	South China
602	350	38.76	128.78	23.61	701	South China
602	360	37.38	120.92	22.89	701	South China
602	370	35.4	113.01	22.45	701	South China
602	380	24.03	126.78	22.48	701	South China
602	390	11.3	132	22.9	701	South China
602	400	19.34	140.65	25.56	701	South China
602	410	19.95	152.09	29.24	701	South China
602	420	1.97	-20.64	-19.18	701	South China
602	430	14.35	-17.5	-18.47	701	South China (Peri-Gondwana)
602	440	29.81	-15.31	-17.97	701	South China (Peri-Gondwana)
602	450	44.95	-12.35	-18.8	701	South China (Peri-Gondwana)
602	460	57.92	-8.17	-20.79	701	South China (Peri-Gondwana)
602	470	53.67	62.99	-39.62	701	South China (Peri-Gondwana)
602	480	45.57	77.14	-64.03	701	South China (Peri-Gondwana)
602	540	45.57	77.14	-64.03	701	South China (Peri-Gondwana)
603	250	16.73	112.1	46.74	701	Sibumasu North
603	260	6.44	106.22	66.93	701	Sibumasu North
603	270	3.17	104.43	77.56	701	Sibumasu North (Peri-Gondwana)
603	540	3.17	104.43	77.56	701	Sibumasu North (Peri-Gondwana)
606	250	25.38	68.23	-30.37	701	Lhasa (S Tibet)
606	260	36.14	44.61	-35.02	701	Lhasa (S Tibet)
606	270	34.53	37.26	-43.97	701	Lhasa (S Tibet)
606	280	30.73	41.85	-54.31	701	Lhasa (S Tibet) (Peri-Gondwana)
606	290	29.19	43.42	-59.6	701	Lhasa (S Tibet) (Peri-Gondwana)
606	540	29.19	43.42	-59.6	701	Lhasa (S Tibet)
616	250	25.38	68.23	-30.37	701	Qiantang (N Tibet)
616	260	36.14	44.61	-35.02	701	Qiantang (N Tibet)

616	270	34.53	37.26	-43.97	701	Qiantang (N Tibet)	
616	280	30.73	41.85	-54.31	701	Qiantang (N Tibet)	
616	290	29.19	43.42	-59.6	701	Qiantang (N Tibet) (Peri-Gondwana)	
616	540	29.19	43.42	-59.6	701	Qiantang (N Tibet) (Peri-Gondwana)	
701	250	-2.78	150.08	45.34	1	South Africa (Core Gondwana)	
701	260	-3.81	148.98	45.87	1	South Africa (Core Gondwana)	
701	270	7.4	-35.85	-51.9	1	South Africa (Core Gondwana)	
701	280	-7.21	143.43	58.41	1	South Africa (Core Gondwana)	
701	290	-14.93	137.7	60.97	1	South Africa (Core Gondwana)	
701	300	20.57	-47.73	-64.52	1	South Africa (Core Gondwana)	
701	310	19.53	-53.66	-67.86	1	South Africa (Core Gondwana)	
701	320	11.5	-60.73	-74.46	1	South Africa (Core Gondwana)	
701	330	7.86	-66.19	-73.18	1	South Africa (Core Gondwana)	
701	340	13.52	-74.58	-76.26	1	South Africa (Core Gondwana)	
701	350	1.55	-69.58	-72.48	1	South Africa (Core Gondwana)	
701	360	8.81	115.68	77.64	1	South Africa (Core Gondwana)	
701	370	18.89	126.95	89.51	1	South Africa (Core Gondwana)	
701	380	15.33	120.65	88.91	1	South Africa (Core Gondwana)	
701	390	-15.29	-62.94	-81.53	1	South Africa (Core Gondwana)	
701	400	-14.06	-67.19	-72.25	1	South Africa (Core Gondwana)	
701	410	-9.35	-75.71	-64.06	1	1 South Africa (Core Gondwana)	
701	420	5.99	-92.66	-67.78	1	South Africa (Core Gondwana)	
701	430	14.65	-107.1	-82.48	1	South Africa (Core Gondwana)	
701	440	9.11	-108.91	-96.15	1	South Africa (Core Gondwana)	
701	450	6.94	-110.79	-111.15	1	South Africa (Core Gondwana)	
701	460	11.07	-118.2	-124.37	1	South Africa (Core Gondwana)	
701	470	12.77	-115.52	-129.29	1	South Africa (Core Gondwana)	
701	480	18.3	-120.15	-135.48	1	South Africa (Core Gondwana)	
701	490	23.06	-130.91	-148.84	1	South Africa (Core Gondwana)	
701	500	26.66	-140.67	-154.56	1	South Africa (Core Gondwana)	
701	510	31.24	-144.41	-146.64	1	South Africa (Core Gondwana)	
701	520	30.22	-139.72	-127.55	1	South Africa (Core Gondwana)	
701	530	25.12	-136.31	-109.38	1	South Africa (Core Gondwana)	
701	540	20.18	-135.59	-94.43	1	South Africa (Core Gondwana)	
702	250	14.74	137.62	-15.64	701	Madagascar (Core Gondwana)	
702	540	14.74	137.62	-15.64	701	Madagascar (Core Gondwana)	
706	250	33.65	26.02	2.34	701	Oran Meseta (Core Gondwana)	
706	540	33.65	26.02	2.34	701	Oran Meseta (Core Gondwana)	
709	250	9.89	143	-0.22	701	Somalia (Core Gondwana)	
709	540	9.89	142.99	-0.22	701	Somalia (Core Gondwana)	
712	250	9.89	143	-0.22	701	Lake Victoria (Core Gondwana)	
712	540	9.89	142.99	-0.22	701	Lake Victoria (Core Gondwana)	
714	250	33.65	26.02	2.34	701	Northwest Africa (Core Gondwana)	
714	540	33.65	26.02	2.34	701	Northwest Africa (Core Gondwana)	
715	250	40.45	-61.4	-0.7	701	Northeast Africa (Core Gondwana)	

715	540	40.41	-61.4	-0.7	701	Northeast Africa (Core Gondwana)	
801	250	19.57	117.9	-56.42	701 Australia (Core Gondwana)		
801	540	19.57	117.9	-56.42	701	701 Australia (Core Gondwana)	
802	250	10.44	148.74	-58.41	701	East Antarctica (Core Gondwana)	
802	540	10.44	148.74	-58.41	701	East Antarctica (Core Gondwana)	
854	250	10.44	148.74	-58.41	701	Dronning Maud Land (Core Gondwana)	
854	540	10.44	148.74	-58.41	701	Dronning Maud Land (Core Gondwana)	

Table S2 $\triangle PGZ$, great circle distance from reconstructed large igneous provinces (LIPs) and kimberlites to a plume generation zone (PGZ; 1% slow contour in SMEAN) or the seismic 'voting' map contours as defined in Lekic et al. (35). We note that although $\triangle PGZ$ is always positive, and hence its distribution is not truly Gaussian, we nevertheless use the normal definition of standard deviation as a simple means of describing the variance. Map contour 4 best fits the distribution of large igneous provinces (LIPs) and kimberlites. True polar wander corrected paleomagnetic reference frame.

Contour	LIPS (N=7)		Kimberlites (N=231)				
	ΔPGZ	% within 10°	ΔPGZ	% within 10°			
PGZ: 1% Slow	8.9 ± 12.8	71%	2.8 ± 4.1	98			
SMEAN contour	4.4 ± 4.7	83% (Siberian Traps excluded, N=6)					
Map Contour 5	4.5 ± 3.4	86	3.5 ± 4.4	97			
Map Contour 4	3.3 ± 3.7	100	2.6 ± 3.8	97			
Map Contour 3	3.9 ± 4.3	86	3.2 ± 3.7	97			
Map Contour 2	6.1 ± 5.5	71	4.4 ± 4.2	97			
Map Contour 1	9.1 ± 7.7	57	6.7 ± 4.3	87			

GPlates Data File

Download the supplementary file (http://www.earthdynamics.org/data/Data_Torsvik.zip) and unzip all files to a common subdirectory. The GPlates Data contains three main files:

- (1) Palaeozoic_SAfrica_Frame_2014.rot
- (2) Palaeozoic_Plates_Simple.shp (and other extensions)
- (3) SMEANSLOW1_ID1.shp (and other extensions)

File 1 is a standard format GPlates rotation file (Supplementary Table S1) but all fits (for a selection of continents and smaller blocks) are relative fits versus a longitude-calibrated South Africa (Plate Id = 701) between 250 and 540 Ma. The header (top 13 lines) includes our true polar wander (TPW) model. At GPlates start-up, select all the three unzipped files. GPlates defaults to a mantle frame at start-up (Plate Id = 0) and reconstructions will be displayed as TPW corrected (like the lower panels in Figs. S7-36) because of our header in the rotation file. To show reconstructions with respect to the spin-axis (i.e. a palaeomagnetic frame) select in GPlates option "Reconstruction", then sub-option "Specify Anchored Plate ID" and type 1.

File 2 is an ARC-GIS shape that contains some selected continent outlines, whilst file 3 is an ARC-GIS shape file of the 1% SMEAN slow contour.

References

- 1. Gubanov AP, Mooney WD (2009) New global maps of crustal basement age. *Eos Trans. AGU* 90, Fall Meet. Suppl., Abstract T53B-1583.
- 2. Torsvik TH, Burke K, Steinberger B, Webb SC, Ashwal LD (2010) Diamonds sourced by plumes from the core mantle boundary. *Nature* 466:352-355.
- 3. Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the Core-Mantle Boundary. *Earth Planet. Sci. Lett.* 265:49-60.
- 4. Torsvik TH, Steinberger B, Cocks LRM, Burke K (2008) Longitude: Linking Earth's ancient surface to its deep interior. *Earth Planet. Sci. Lett.* 276:273-283.
- 5. Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. *Geochem. Geophys. Geosys.* 3:doi:2001GC000168.
- 6. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2006) Large Igneous Provinces generated from the margins of the Large Low Velocity Provinces in the deep mantle. *Geophys. J. Intern.* 167:1447-1460.
- 7. Leat PT, Dean AS, Millar IL, Kelley SP, Vaughan APM, Riley TR (2005) In Terrane Processes at the Margins of Gondwana (eds. A.P.M. Vaughan, P.T.Leat & R.J. Pankhurst). *Geological Society of London Special Publication* 246:359-380.
- 8. Eldholm O, Coffin MF (2000) Large Igneous Provinces and plate tectonics, in: MA Richards, RG Gordon, RD van der Hilst (Eds.), The History and Dynamics of Global Plate Motions, American Geophysical Union, Washington, pp. 309–326.
- Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008) Long term stability in Deep Mantle structure: Evidence from the ca. 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). *Earth Planet. Sci. Lett.* 267:444-452.
- 10. Chauvet F, *et al.* (2008) Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up. *Bull. Soc. Géol. Fr.* 179:383-395.
- 11. Kuzmin MI, Yarmolyuk V, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstruction of the Siberian continent based on interaction with the African large low shear velocity province. *Earth-Science Reviews* 102:29-59.
- 12. Torsvik, TH, et al. (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth-Sci. Rev. 114:325-368.
- 13. Steinberger B., Torsvik TH (2008) Absolute plate motions and true polar wander in the absence of hotspot tracks. *Nature* 452:620-623.
- 14. Gradstein FM, Ogg JG, Smith AG (Eds.) (2004) *A Geologic Time Scale 2004*. Cambridge University Press, Cambridge, 589 pp.
- 15. Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. *Cambridge University Press*, 411 pp.
- 16. Torsvik TH, Cocks LRM (2011) The Palaeozoic palaeogeography of central Gondwana. In: Van Hinsbergen, DJJ, Buiter, SJH, Torsvik, TH, Gaina, C, Webb, SJ (eds.) The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History. *Geological Society London Special Publications* 357:137–166.
- 17. Torsvik TH, Cocks LRM (2013) GR focus review: Gondwana from top to base in space and time. *Gondwana Research* doi.org/10.1016/j.gr.2013.06.012).
- 18. Cocks LRM, Fortey RA (2009) Avalonia: a long-lived terrane in the Lower Palaeozoic? *Geological Society London Special Publications* 325:141–155.
- 19. Cocks LRM, Torsvik TH (2011). The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. *Earth-Science Reviews* 106:1–51.
- 20. Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: a new Cambrian Large Igneous Province in Australia with possible links to faunal extinctions. *Geology* 34:461–464.

- 21. Torsvik TH, Paulsen TS, Hughes NC, Myrow PM, Ganerød M (2009) The Tethyan Himalaya: palaeogeographical and tectonic constraints from Ordovician palaeomagnetic data. *J. Geol. Soc. Lond.* 166:679-687.
- 22. Zhang H-F, *et al.* (2001) Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. *Geochemical Journal* 35:315-331.
- 23. Liu G-L, Wang X-W, Lü X-M (1983) Dahongshan Lamproites. Geological Publishing House, Beijing, 186 pp. (in Chinese with English abstract).
- 24. Li Q-L, Wu F-Y, Li X-H, Qiu Z-L, Liu Y, Yang Y-H, Tang G-Q (2011) Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. *Lithos* 126:127-134.
- 25. Torsvik TH, Rehnström EF (2003) The Tornquist Sea and Baltica-Avalonia docking. *Tectonophysics* 362:67-82.
- 26. Domeier M, Torsvik TH (2014) Focus Review Paper: Plate kinematics of the Late Paleozoic. *Geoscience Frontiers*:10.1016/j.gsf.2014.01.002 (in press).
- 27. McInnes BIA, Evans NJ, McDonald BJ, Kinny PD, Jakimowicz J (2009) Zircon U-Th-Pb-He double dating of the Merlin kimberlite field, Northern Territory, Australia. *Lithos* 112S:592-599.
- 28. Lapierre, H, *et al.* (2004) The Tethyan plume: geochemical diversity of Middle Permian basalts from the Oman rifted margin. *Lithos* 74:167-198.
- 29. Zhou M-F, *et al.* (2002) A temporal link between the Emeishan Large Igneous Province (SW China) and the end-Guadalupian mass extinction. *Earth Planet. Sci. Lett.* 196:113–122.
- 30. Bowring SA, Erwin DH, Jin YG, Martin MW, Davidek K, Wang W (1998) U/Pb zircon geochronology and tempo of the End-Permian mass extinction. *Science* 280 :1039–1045.
- 31. Reichow MK, *et al.* (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. *Earth Planet. Sci. Lett.* 277:9–20.
- 32. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. *Earth Planet. Sci. Lett.* 277:490–500.
- 33. Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M, Zanchi A (2009) Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. *GeoArabia* 14:17-48
- 34. Boyden JA, Müller RD, Gurnis M, Torsvik TH, Clark JA, Turner M, Ivey-Law H, Watson RJ, Cannon JS (2011) Next-generation plate-tectonic reconstructions using GPlates, in G.R. Keller & C. Baru (eds.): *Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences*, Cambridge University Press, 95-113.
- 35. Lekic V, Cottar S, Dziewonski A, Romanowicz B (2012) Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. *Earth Planet. Sci. Lett.* 357:68-77.