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Seventeen original ;:,apers that are parts of, or spin-offs from, the TVLF project "Effects of 
long distance airborne pollution", are summarized. All papers include data from the 
Solhomfjell reference area, a S Norwegian old-growth boreal coniferous forest with high 
deposition of long distance airborne pollution relative to other parts of Norway. Vegetation 
and environmental structure, population and vegetation dynamics, and vegetation change, was 
integrated by extensive use of the same sample sets. The nested sampling included 100 
extended macro sample plots (64 m2

) for tree species and 200 meso sample plots for the 
understory (1 m2; with 33 environmental variables measured and presence/absence of all 
species recorded in 16 subplots ). Species abundances were recorded in 50 meso plots all years 
1988-93, while all 200 plots were analyzed in 1988 and 1993. Other sampling designs were 
used for three special studies in the Solhomfjell area. Population biology of Hylocomium 
splendens was studied in six of NIJOS' ten areas for vegetational and environmental 
monitoring of Norwegian boreal spruce forests, as well as in the Solhomfjell area. 

Gradient relationships of vegetation at the I m2 scale in the Solhomfjell area are 
summarized by DCA ordination. Three coenoclines are identified: (I) a broad-scale gradient 
from xeric, lichen-dominated pine forest via subxeric pine forest dominated by ericaceous 
species and poor, Vaccinium myrtillus-dominated spruce forest to richer, herb-rich spruce 
forest, (2) a fine-scale gradient in degree of paludification ( e.g., dominance by Sphagnum 
spp.), most strongly visible in the bottom layer, and (3) a micro-scale gradient from 
dominance by small hepatics and mosses to dominance by larger mosses of the forest floor. 
Associated complex-gradients were identified or hypothesized by use of measured 
environmental variables: (1) danger of soil moisture deficiency and soil nutrient content, (2) 
median soil moisture, and (3) several aspects of microtopography. Several kinds of 
independent evidence indicates that physiological tolerance is more important than interspecific 
competition in the understory. Temporal variation in soil moisture and soil pH is studied, with 
reference to the main gradients. Persistence of cryptogams as well as vascular plant species 
was species-specific and size-dependent, with little variation between years. The rate of 
vegetation dynamics varied predictably along the main coenocline, in relation to site 
productivity and environmental harshness. The magnitudes of one-year change in species 
abundances and vegetation were used to evaluate the significance of change in the five-year 
period. Significant humus acidification occurred in the five-year period, most strongly in richer 
spruce forest where several vascular plant species declined and vegetation changed in direction 
of poor spruce forest. N fertilization may explain the increase of Deschampsia flexuosa in 
spruce forest. Significant enrichment of pine forest humus is demonstrated. Norway spruce and 
Scots pine showed inconsistent patterns of variation in relative crown density. Stem number 
and stand volume in permanent plots increased for all tree species. 

Modular growth, branching patterns, and hence demography of the clonal moss 
Hylocomium splendens, was strongly size-dependent. Branching increased and risk of 
termination decreased with increasing segment size. Strong apical dominance was found. A 
combination of positive density-dependence of mean segment size, and regulation of segment 
numbers at very high densities was demonstrated. Mean segment size was strongly related to 
length of the photosynthetically active period. Increase of most bryophytes in the Solhomfjell 
area 1988-93 was primarily due to several mild, rainy winters during the period. 



4 SOMMERFEL TIA SUPPLEMENT 6 ( 1995) 

Advantages of an integrated approach to monitoring of boreal forests (including trees, 
understory and environment; the population, species and vegetation levels of organization; 
several spatial and temporal scales; and univariate as well as multivariate statistical methods) 
are emphasized. Data from other regions and longer time periods are needed to assess the 
extent of vegetation response to environmental change. 

Keywords: Acidification, Coniferous forest, DCA, Dynamics, Environmental change, Gradient, 
Hylocomium splendens, Scale, Vegetation. 

Rune Halvorsen @kland, Botanical Garden and Museum, University of Oslo, Trondheimsveien 
23B, N-0562 Oslo 5, Norway. 
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INTRODUCTION 

INTRODUCTION 

During the 20th century, European forest soils have experienced acidification and cation 
leaching, apparently due to the effects of long distance airborne pollutants [ see II, XIII, XV]. 
Simultaneous nitrogen enrichment may lead to nutrient unbalance (e,g., Tamm 1991). Since 
"new forest damages" were first reported from C Europe (see reviews by, e.g., Schutt & 
Cowling 1985), large efforts have been made to determine extent and causes of forest decline, 
in Norway as well as in other countries (see Aamlid et al. 1990, Venn et al. 1993). Although 
causal interpretation of forest vitality measurements is often problematic ( e.g., Solberg 1993, 
Thomsen & Nellemann 1993, Nellemann & Frogner 1994), coniferous trees in SE Norway 
now seemingly suffer from long-term vitality reductions (Venn et al. 1993, Solberg 1994). 

The ground vegetation is likely to be more sensitive than trees to environmental change 
[see II] because the number of species is high and because many vegetative and generative 
strategies are represented (see Eriksson 1989, [XI, XII]). Fundamentally different mechanisms 
of water and nutrient uptake are found in vascular plants and cryptogams (from soil, and 
mostly directly from the atmosphere, respectively). Thus the two groups are likely to react to 
different sets of environmental factors and hence, complement each other as biological 
indicators. 

Several recent studies from C Europe and S Sweden have reported increase of acid
tolerating and/or nitrophilous species [see II]. No consistent trends have, however, been 
reported from N Europe (Norway, N Sweden, Finland) where deposition rates are lower (see 
Uihde & Nieppola 1987, Dahl 1988, Bj0mstad 1991, Rosen et al. 1992). This may be due to: 
too low a number of studies still carried out, regionally different patterns of vegetation change, 
or limitations set by the quality and extent of available data. In the almost complete absence 
of long time-series of vegetation analyses in permanent plots (see Sunding 1985, [II, XIV]), 
vegetation change has been approached by reanalysis of previously analysed plots, relocated 
with the greatest possible precision, or by pseudoreplicated designs (Hurlbert 1984) such as 
synchronous comparison of areas along deposition gradients [ see XV]. Statistical tests and 
multivariate techniques (see Minchin 1987, ter Braak 1987, R. 0kland 1990, Palmer 1993) 
have so far rarely been used in these studies, because of low number of relocated plots. 

Interpretation of vegetation change requires good basic knowledge of the system studied 
{T. 0kland 1990, [II]). Nordic approaches to boreal forest vegetation have mostly been 
descriptive in scope, with emphasis on classification (cf. R. 0kland & Bendiksen 1985, [II]). 
The existence of one major coenocline in boreal forests; from lichen-rich pine forest to mesic 
spruce forest, has often been hypothesized [ see II for references]. High local importance of 
other coenoclines has been demonstrated by recent studies applying multivariate techniques 
to unbiased sample sets (e.g., T. 0kland 1990, 1993, Rydgren 1993). A regionally valid 
gradient reference frame (R. 0kland & Bendiksen 1985) that systematizes our present 
knowledge is urgently needed. 

Development of a vegetation model is a major task of contemporary vegetation science 
(see Austin 1990, Keddy 1992, van der Maarel & Sykes 1993, Austin & Gaywood 1994). 
Several explanations have been forwarded for species turnover along the major coenocline, 
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e.g.; (1) resource competition for light versus N (Kuusipalo 1985, Tilman 1988), and (2) 
centrifugal organization along productivity gradients (Keddy & MacLellan 1990), but others 
may also be relevant, e.g., (3) species distributions determined by physiological tolerance (cf. 
Austin 1990). Interspecific competition is attributed high importance in ( 1) and (2); 
environmental stress, climatic fluctuations and fine-scale disturbance in (3). Detailed data on 
the gradient relationships of vegetation may have relevance to evaluation of vegetation models 
(R. 0l<land 1992). 

Two separate, but methodologically co-ordinated programmes for integrated monitoring 
ofunderstory vegetation, tree growth and vitality, and soil properties in Norwegian boreal old
growth forests, were started in 1988: (1) NIJOS' vegetational and environmental monitoring 
of Norwegian boreal spruce forests dominated by Vaccinium myrtillus, using ten reference 
areas in south and central Norway (see T. 0kland 1989, 1990, 1993), and (2) the TVLF 
project "Effects of long distance airborne pollution", in the Solhomfjell reference area, S 
Norway [see II]. To mitigate several gaps in our knowledge, with high relevance to 
interpretation of data on vegetation change, basic research was incorporated into the 
monitoring programmes. Such gaps include (1) species responses to major complex-gradients 
[T. 0kland 1990, 1993, in prep., II, III], (2) interactions between layers [see II, IV], (3) the 
importance of competition (between and within species; see [II, IV, VII, VIII, IX, XI, XIII, 
XIV]), (4) fine-scale vegetation-environment relationships [see T. 0kland 1990, II, III, IV, VII, 
VIII], (5) the natural, year to year, vegetation dynamics [see XI, XII, XIII, XIV], (6) 
population biology and life history of the dominant bryophyte and lichen species [ see VIII, 
IX, X, XI], and (7) environmental variation on fine temporal scales (see Skyllberg 1991, 
Falkengren-Grerup 1994, [V, VI]). 

AIMS 

This paper reports results and conclusions from basic as well as applied research in the 
Solhomfjell reference area, 1988-94. A study of the population biology of the moss 
Hylocomium splendens, jointly using data from the Solhomfjell area and six of NIJOS · ten 
monitoring areas [ see VIII] is also reported. Data from outside the Solhomfjell area are also 
included in [I, XVI]. The major, specific aims are: (1) to identify the major gradients in 
vegetation ( coenoclines) in a boreal coniferous forest and to relate them to environmental 
complex-gradients, (2) to quantify the dynamics ofboreal forest vegetation on fine spatial and 
temporal scales, and (3) to test for long-term change in Norwegian coniferous forests - in plant 
populations, species abundances, species composition, and tree vitality - and discuss 
relationships between these changes and environmental and/or climatic change. Effects of 
deposited long distance airborne pollutants are particularly addressed. 



10 SOMMERFELTIA SUPPLEMENT 6 (1995) 

THE SOLHOMFJELL REFERENCE AREA 

THE INVESTIGATION AREA 

The Solhomfjell area in Gjerstad, S Norway, ea. 2 km2, 58°58' N, 8°58' E, altitude 350-480 
m.a.s.l., established as a reference area for monitoring of boreal forests in 1988, was used for 
all studies reported in this paper. Data from other areas are included in [I, VIII, IX, X, XVI]. 
The Solhomfjell area is geologically homogeneous; the bedrock belongs to the central-southern 
Norwegian Precambrian (Oftedahl 1980), and is low-weathering. The bedrock is mostly not 
covered with morainic deposits, thus most of the soils have been formed in situ. 

The climate is suboceanic, with an estimated annual temperature normal 1961-90 of 4.2 
°C and an annual mean precipitation (1961-90 normal) of ea. 1300 mm (see paper [II] for 
details). Except for 1988 and 1991, with permanent snow cover and winter temperatures close 
to normals, all winters 1988-93 were exceptionally mild (see paper [XIII] for details). The 
early summers were mostly drier than normal. A particularly strong (early) summer drought 
occurred in 1992 when low rainfall coincided with periods of high temperatures. Rainfall in 
the growing season was below the normal in all years except 1988, while winter precipitation 
was close to, or higher than, the normal. All years were warmer than normal. 

Annual amounts of acidifying compounds deposited by precipitation ( 1992 and 1993 
averages) were 7.9 kg N ·ha-1 •yr- 1 (4.3 kg NO3-N and 3.6 kg NH4-N) and 6.4 kg SO4-S·ha-1 ·yr-1

; 

the annual mean rainwater pH was 4.4 (T0rseth & Reyset 1993, T0rseth & R0stad 1994). The 
deposition of long distance airborne pollutants is high relative to other parts of Norway 
( S ta tens F orurensningstilsyn 1992). 

The area is situated in the southern (and middle) boreal zone (in the terminology of Ahti 
et al. 1968). Forests dominated by Norway spruce (Picea abies (L.) Karst.) and Scots pine 
(Pinus sylvestris L.) alternate with mires as the dominant ecosystem. 

The forests have not been commercially exploited, and no traces of logging occur. Trees 
with fire scars have been observed sporadically, but only outside the sampled transects. It is 
likely that the development of vegetation has been continuous for a long time, perhaps several 
hundred years. Tree ages up to 200 years for Norway spruce and 350 years for Scots pine 
have been recorded. The area is protected as a National Nature Reserve. 

THE SAMPLING DESIGN 

A nested sampling design was designed for integrated vegetation monitoring in the Solhomfjell 
area (and used for all studies except [V, VI, VII]). 

Eight transects of different lengths were subjectively selected to cover the variation in 
boreal forest vegetation in the Solhomfjell area. Every tenth meter along a transect was a 
potential site for the lower left comer of a macro sample plot, 16 m2

• Positions were rejected 
if they included (1) mires, tarns or elements of ecosystems other than forest, (2) more than 
50% naked rock, (3) cliffs higher than 1 m, or ( 4) boulder stones with diameter larger than 
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1 m. From the accepted positions, macro sample plots were drawn at random except for the 
following restrictions: (1) plot number per transect was to be proportial with transect length, 
and (2) total plot number was to be 100. Extended macro plots, 64 m2

, obtained by including 
a 2 m zone around each macro plot, were used for studies of tree layer dynamics. Each macro 
sample plot was divided into 16 macro subplots, of which two ( along opposite margins of the 
macro plot, in fixed positions) were taken as meso sample plots ( 1 m2

). Meso plots with ( 1) 
more than 25% naked rock, (2) micro-scale cliffs higher than 0.25 m, (3) boulder stones with 
diameter larger than O .25 m, or ( 4) stems of living trees higher than 2 m, were rejected and 
replaced by a neighbouring plot, selected from a fixed priority list. Each meso sample plot was 
divided into 16 meso subplots (hereafter referred to as subplots; 0.0625 m2 each), of which 
two in fixed positions were taken as micro sample plots and divided into 16 subplots. Further 
details of sampling are provided in paper [II]. 
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SUMMARY OF PAPERS 

PAPER I 

Nested sample plots from studies of three Norwegian coniferous forest areas [Heylandet, N 
Trnndelag, C Norway (J. Holten et al., unpubl.); Rausj0marka, Akershus, SE Norway (T. 
0kland 1990); and the Solhomfjell area] were used (16 and 1 m2 in H0ylandet, otherwise 1 
and 1/16 m2

). For each sample plot size, species quantities were recorded as frequency in 
subplots. All data sets were subjected to DCA ordination, using the same choice of options. 
The total abundance recorded for each species, and hence species tolerances which are 
positively correlated with abundance (Austin 1987), decreased with plot size. This explains 
why beta diversity, measured as the length of the first DCA axis ( calculated by implicitely 
averging species tolerances; Hill 1979) was inversely related to sample plot size. Eigenvalues 
of the axes increased when the plot size was reduced, due to weakening of structure in the 
data matrices when fine-grained patterns of vegetation are emphasized. 

PAPER II 

A gradient reference frame for understory vegetation in the Solhomfjell area was established 
by identification of major coenoclines and complex-gradients. The main data set included 
analysis in 1988 of 200 meso sample plots ( 1 m2

) with 171 species, provided with 
measurements of 33 environmental variables. The set of 400 micro sample plots ( 1/16 m2

) 

with 144 species was also used. Species abundance was recorded as frequency in 16 subplots. 
DCA and LNMDS ordinations of meso sample plots were largely identical, with two 

coenocline axes that could be interpreted ecologically. The first axis (DCA 1) was significantly 
correlated with 20 environmental variables at the P < 0.0001 level; most strongly with 
topographic position. pH and Total N (both decreasing along DCA 1) and loss on ignition 
(increasing) were strongly correlated with DCA 1 in the spruce forest (Subset A; DCA 1 < 
3.25 S.D. units); soil depth, loss on ignition and micro-scale unevenness (all decreasing along 
DCA 1 ), topographic position, and Total N (increasing) in the pine forest (Subset B). The 
ordering of sample plots along DCA 1 was almost perfectly recovered along first axes in 
separate DCA ordinations of vascular plants (Subset C: 65 species) and cryptogams (Subset 
D: 106 species), and in the micro plot ordination. This indicates existence of a main 
coenocline that influences species of all plant groups, and that is a result of two complex
gradients (both related to topography): (1) a topography-soil depth complex-gradient in the 
pine forest [coenocline from xeric (lichen-rich) pine forest (forest type B2 in subsequent 
papers; DCA 1 > 4.50 S.D. units) via subxeric (Calluna- and Vaccinium-rich) pine forest (type 
Bl, 3.25 < DCA 1 ~ 4.50 S.D. units) to submesic Vaccinium myrtillus-dominated spruce 
forests (forest type A2 in subsequent papers, 2.00 < DCA 1 ~ 3.25 S.D. units)], and (2) a 
complex-gradient in soil nutrient status in the spruce forest [ running from poor spruce forest 
to richer spruce forest (type Al, DCA 1 ~ 2.00 S.D. units)]. 
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DCA 2 was significantly correlated with 10 environmental variables at the P < 0.0001 
level; most strongly with canopy cover and soil depth (increasing along the axis), and median 
soil moisture, extractable Al and inclination ( decreasing). Patterns of correlated variables did 
not differ much between spruce and pine forests. The only other strongly correlated ordination 
axis was the second axis of the cryptogam ordination. DCA 2 was thus interpreted as a fine
scale paludification gradient that mainly influences the bottom layer, also reflecting the 
variation from between trees (high soil moisture) to underneath trees. The correlations of DCA 
2 with soil depth and inclination indicated that soligenous (rather than topogenous) fine-scale 
paludification dominates in the Solhomfjell, due to a superhumid climate. 

Mechanisms behind gradient responses are discussed. The soil moisture deficiency 
hypothesis; that the limits of vascular plants and bryophytes towards xeric sites are set by 
physiological tolerance to desiccation (survival of extremely dry periods), is consistent with 
the absence of variation in soil pH or cation content in pine forest humus. The increase in 
Total N towards the xeric end of the main coenocline may be interpretated as oversaturation 
and N accumulation due to deposition of airborne NO3- or NH/. Limits of cryptogamic 
species towards more mesic sites ( and towards paludified sites) may be set by competitive 
ability (growth rates) in accordance with the competitive hierarchy theory, although other 
mechanisms may also be involved. The most important factor for differentiation of vascular 
plants along the nutrient gradient in spruce forest is condidered to be N availability, while 
bryophytes probably respond to a complex of factors, including structural properties of the 
humus layer. 

Structuring processes are discussed with reference to the observed patterns. The lack of 
a closed bottom layer in almost all sample plots is considered a strong indication that fine
scale disturbance and density-independent mortality (physiological tolerance) are more 
important than interspecific competition. 

PAPER III 

Paper [III] presents an alternative treatment of data from paper [II], using the 200 meso plots 
(also divided into forest type and layer subsets [II; see above] and the 400 micro plots (1988 
analyses) from the Solhomfjell area. The 33 environmental explanatory variables measured at 
each meso plot were classified to four groups (El: topographic, E2: topographically dependent 
environmental, E3: soil chemical, and E4: biological and strongly biologically dependent). 
Nine spatial explanatory variables were derived from geographical co-ordinates as 
combinations of x and y of order up to three. The variation in species-sample plot matrices 
was partitioned onto different sets of explanatory variables by use of (partial) canonical 
correspondence analysis, according to the method outlined by Borcard et al. (1992). 

Ca. 35 % of the variation in species abundances was explained by the 42 explanatory 
variables, of which ea. twice as much by significant environmental as by spatial variables. Ca. 
45% of the variation explained by environmental variables was due to topography. This 
supports the hypothesis of macro-scale topographic control of boreal forest vegetation 
(Kuusipalo 1985, Sepponen 1985, [II]). Topographic variables were most important in pine 
forest, soil chemical variables in spruce forest [ cf. II]. At finer scales (reduced plot size), less 
variation could be explained by explanatory variables, due to the weakening of vegetation-
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environment relationships ([I], Palmer & Dixon 1990, Reed et al. 1993). 
The lower fraction of variation in abundance explained for cryptogams than for vascular 

plants, may be due to: ( 1) higher relevance of the explanatory variables to vascular plants 
because they take up water and nutrients from soil while uptake is directly from the air in the 
ectohydric (Buch 1947) cryptogams which dominate boreal forests, (2) the larger size of 
vascular plants, integrating the environment over broader scales (Svensson & Callaghan 1988, 
Palmer & Dixon 1990), (3) higher disorderliness (Fowler 1990) in the bottom layer, due to 
smaller plant size (lower plant unit area; van der Maarel 1988), perhaps resulting from higher 
susceptibility to fine-scale disturbance. 

Some methodological aspects of CCA with variation partitioning are discussed: 
improvements, necessary precautions, and advantages over alternative methods. 

PAPER IV 

Patterns of associations between the 36 most frequent bryophyte species and their relationships 
with trends in a and (3 diversity were studied, using 85 meso sample plots (1988 analyses; 
data from [II]) from poor and slightly rich spruce forest (strongly paludified plots omitted) in 
the Solhomfjell area. Seven data sets at five spatial scales (from 1 m2 to 1/256 m2

) were 
derived by use of meso and micro subplots. The range and dispersion of a diversity values 
(species number per sample plot) in the data sets were significantly higher than in comparable 
model data sets. This indicated variation from favourable to unfavourable conditions for 
bryophytes at all scales, probably in relation to cover of the upper layers ( the canopy closure 
gradient, cf. paper II]). The number of positive associations was significantly higher than 
predicted from a random distribution, for all sample plot sizes except the smallest. This excess 
of positive associations was due to the presence of (1) a diversity trends, as demonstrated by 
a stochastic simulation study, and (2) J3 diversity (variation along environmental gradients). 
Facilitation - positive density-dependence caused by more favourable moisture conditions 
within dense stands [suggested by, e.g., Hobbs & Pritchard (1987), Scandrett & Gimingham 
(1989), and During (1990)] - is discussed as a possible third cause of excess positive 
associations. A micro-scale coenocline from dominance of large forest floor mosses to small 
hepatics was added to the two more broad-scale coenoclines identified in paper [II] 

The number of significant negative associations was generally low, and deviated neither 
from theoretical values assuming random distribution of species, nor from predicted values 
accounting for a diversity trends. The low proportion of negative associations, even in the 
presence of J3 diversity trends, suggests that interspecific competition is not important in this 
vegetation. Several alternatives to competition are discussed; ( 1) static mechanisms for 
avoidance of competition, (2) mobility, and (3) high importance of density-independent 
mortality, in particular due to fine-scale disturbance. 
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PAPER V 

Seasonal variation in volumetric moisture content of the upper 5 cm of the humus layer was 
investigated in 1992 in 30 sample plots (1 m2

) from the Solhomfjell area, not included in the 
main sampling scheme but selected to span the coenocline from xeric pine forest to poor 
submesic spruce forest ( cf. paper [II]). Plot positions along this coenocline (DCA 1 of paper 
[II]) were found by passive ordination. 

Seasonal variation in soil moisture was related to temperature and, even more important, 
rainfall. Soil moisture contents in a dry and a wet period [ within one year (30 plots), and 
between years (June 1992, under extreme drought, and October 1988, with moisture close to 
the median; measurements in the 200 meso plots of [II])] were weakly correlated. This 
supported the hypothesis of paper [II], that there are considerable variation between sites in 
the cumulative distribution of soil moisture. 

Due to nonlinear variation in organic content (highest in subxeric forest) and bulk 
density of the humus (highest in xeric sites) along DCA 1, the duration of humus moisture ( at 
any level) increased in pine forest towards xeric sites, contrary to predictions [in II] from the 
soil moisture deficiency hypothesis. Soil depth did, however, decrease along DCA 1. This 
suggested a re-formulation of the hypothesis in terms of total moisture available to plants 
during dry periods, also taking water stored in deeper soil layers into account. 

The median and upper percentiles of moisture duration curves were significantly 
different between paludified and non-paludified sites. Soil moisture content was negatively 
correlated with DCA 2 at all sampling occasions except during early summer drought. This 
confirms the hypothesis [paper II] that DCA 2 depends on median (normal) soil moisture. 

PAPER VI 

Seasonal variation in pHH2o was studied in the Solhomfjell area, by collecting humus samples 
from the 30 sample plots of paper [V] at 12 occasions between May and October 1992. pH 
amplitudes were 0.20-0. 75 for single plots, 0.23 for the average. pH was low in spring, 
generally higher in summer ( except for 31 July, when the lowest average was found), and 
stable at intermediate levels during September and October. Differences from more mesic 
forests (e.g., dominated by spruce; Hesselman 1937, Skyllberg 1991) were: (1) no correlation 
between average pH and humus moisture (also see Siren 1955), and (2) deviant seasonal 
trends, except for the low early summer pH which has been attributed to cation uptake by 
plants and microorganisms (Skyllberg 1991 ). The results may indicate lower influence of 
biological processes on humus pH in pine than in spruce forests. 

pH was significantly correlated (P < 0.0001) between 38 out of 66 pairs of occasions. 
Coenocline position (DCA 1 score) and pH were positively correlated (pH increasing towards 
xeric pine forest) at 11 sampling occasions although significant at P < 0.05 at two occasions 
only. This gives additional support to the hypothesis [ cf. paper II] that in pine forest the main 
coenocline is not caused by variation in nutrient availability. 
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PAPER VII 

A gently sloping macro plot of 14 x 8 m in spruce forest in the Solhomfjell area was 
intensively investigated. This macro plot was divided into 112 contiguous meso plots ( 1 m2) 

with 1792 micro plots (1/16 m2
). A detailed map of the macro plot was obtained by levelling 

points 8.3 cm equidistant and mapping tree crowns, stones, logs etc. Seventeen environmental 
explanatory variables were recorded at the meso scale, 13 at the micro scale. Three complex
gradients were identified, associated with (1) soil moisture, (2) (micro-)topographic variables, 
and (3) canopy cover. These were partly inter-correlated. Cover in micro plots was recorded 
for all species (23 vascular plants, 73 cryptogams) and displayed on maps. Species 
distributions largely reflected the three complex-gradients. 

Sets of meso and micro sample plots were ordinated separately by DCA, as well as 
passively placed along the interpreted DCA axes of paper [II]. Two coenoclines were present 
at both scales: ( 1) from level, Sphagnum-dominated plots with high median soil moisture to 
more strongly sloping and more uneven sites with high importance of hepatics, lichens and 
smaller mosses, and (2) a coenocline related to canopy closure, partly correlated with ( 1 ). The 
results indicate high local importance of fine-scale paludification, in accordance with paper 
[II], but also open for local divergence of the canopy cover and median soil moisture 
gradients. Coenocline ( 1) corresponds to the cryptogamic coenocline in [IV], associated with 
plant size. It may be related to disturbance (frequency of impacts) as well as environmental 
stress. 

Semivariances and fractal dimensions were calculated for environmental and biotic 
variables, and ordination axes. The (average) level of spatial structuring, and spatial 
dependence as function of distance, both varied among variables and axes. Vegetation was 
spatially structured to a slightly lower extent than the most strongly spatially structured 
environmental variables (soil depth and canopy closure). 

The fraction of variation in species abundances that could be explained by 
environmental variables (using the CCA method of paper [III]), were 34% at the meso scale 
and 14% at the micro scale, while 33% and 17%, respectively, were explained by spatial 
variables. Correlations between environmental variables and ordination axes (and between 
pairs of environmental variables) were lower at finer scales. This supports the hypothesis of 
reduced environmental structuring of vegetation towards finer scales (notably below 1 m2

; cf. 
[I,III], Reed et al. 1993), probably due to increasing importance of fine-scale disturbance and 
random processes towards very fine scales. 

PAPER VIII 

Hylocomium splendens, a perennial clonal moss, is particularly well suited for demographic 
studies. It is one of the most abundant mosses throughout the circumboreal forest zone, it has 
annual periodicity in the emergence of new modules (segments), and its ecophysiology has 
been studied in detail ( e.g., Busby et al. 1978, Callaghan et al. 1978, Skre et al. 1983, 
Sonesson et al. 1992). New growing points usually emerge in spring and develop into mature 
segments their second summer. Population increase is brought about by ramification 
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(branching) of the youngest segment or by regeneration from older parts of the shoot system 
(bud initiation after one or several years of delayed development). 

A technique for nondestructive re-identification of segments in permanent vegetation 
plots is devised. Seven areas were used for this study; six of NIJOS 's ten monitoring areas 
for vegetational and ecological monitoring of boreal spruce forests in south and central 
Norway (T. 0ldand 1990, 1993, in prep.), and the Solhomfjell area. A total of 119 permanent 
sample plots in spruce forest were used. All growing points and mature segments were 
censused every autumn since 1990, after the current year's mature segment had reached full 
size. The dry weight of each mature segment (in log2 nw-10-4 g units) was estimated from 
morphological measurements performed in situ. This study is based upon precise demographic 
information on 9,206 growing points and 7,602 mature segments, obtained during censuses 
in 1990, 1991 and 1992. 

Each mature segment has a potential for production of new growing points that is 
strongly size-dependent; ea. 40% of the variation in a segment's size could be explained by 
the size of its mother segment. Size relationships within segment chains indicated that 
integration is largely restricted to adjacent segments. The number of offspring growing points 
(by ramification as well as regeneration) was positively size-dependent, while termination risk 
was negatively size-dependent. Mature segments produced by regeneration were smaller, while 
segments produced by ramification were larger than the average segment. Strong apical 
dominance was demonstrated. Annual recruitment 1989-92, averaged over populations, areas 
and years, was 32.3%; 23.3% by regeneration, 7.5% by ramification, and 1.5% by accidentally 
introduced shoots. Annual mortality was 19.7%; 6.8% by loss, 1.9% by grazing, and 11.0% 
by termination for other reasons. 

Demographic data for growing points and mature segments were analyzed separately by 
stage-structured transition matrix models. The total population increased every year, the 
average intrinsic rate of increase, A, equalled 1.10-1.11. Vital rates, and hence fitness, were 
strongly size-dependent. Thus the contributions of ramification (mainly of large segments) and 
regeneration (mainly giving rise to small offspring segments) to increase in A were equal 
despite regeneration was three times more frequent than regeneration. Ramification is 
important for maintenance of size and risk-spreading among ramets under favourable 
conditions, while high ability to regenerate from older segments facilitates resilience to, and 
recovery after, disturbance. 

If not interrupted by regeneration after damage or severe disturbance, mean Hylocomium 
splendens segment size is expected to increase gradually to a limit set by the local 
environment (higher in favourable sites). Hylocomium splendens has high flexibility as to life 
strategy: competitor traits (large segments, high importance of ramification) dominate in 
favourable habitats with long continuity, stress-tolerator traits (small segments, low importance 
of ramification) in unfavourable habitats with long continuity, and ruderal traits (small 
segments, high importance of regeneration) in habitats with high frequency of fine-scale 
disturbance. 

Hylocomium splendens is closely similar to clonal forest vascular plants in major 
demographic traits, such as size-dependence of fitness and branching patterns. 



18 SOMMERFEL TIA SUPPLEMENT 6 (1995) 

PAPER IX 

This study was based upon demographic information on 14,776 Hyloeomium splendens 
growing points from 119 populations (1990-94 censuses of the same sample plots as in [VIII]; 
see [VIII] for details). Population mean segment size was positively correlated with bryophyte 
cover (a measure of density); twice as large at 100% cover as at 1 % cover. This is probably 
due to improved moisture conditions in dense stands, notably the prolonged periods with 
positive net photosynthesis ( cf. paper [IV]). 

The regeneration frequency declined with increasing density, most strongly when effects 
of size were corrected for, probably due to light-induced reduction of bud initiation in dense 
stands. The size-corrected mortality (termination and loss) was not related to density, but 
burial in the moss carpet (affecting 2.0% of all growing points, ea. 10% of all mortality), 
increased strongly with density and at high densities affected ea. 5% of all growing points. 
Regulation of Hyloeomium splendens populations at high densities may therefore occur by a 
combination of reduced branching (ramification and regeneration) and increased burial in the 
bryophyte carpet. However, this mechanism is apparently rarely invoked; disturbance and 
environmental variation at scales down to the size of individual Hyloeomium splendens 
segments seemingly keep Hyloeomium populations at lower densities for most of the time. 

PAPERX 

The demography of Hyloeomium splendens in spruce forest in the Solhomfjell area is followed 
for five one-year periods (see paper [VIII] for details). The relative number of growing points 
increased 40% from 1989 to 1994; it was unchanged 1989-90 and increased the other one-year 
periods (6%, 18%, 12%, 1 %, respectively). The average size of mature segments (in log2 DW-
10-4 g units, see [VIII]) in consecutive one-year periods were 4.61 (segment mature in 1990), 
4.47, 4.80, 4.95, and 4.47. Braching rates were dependent on absolute size and relative growth 
rates [VIII], thus the population increased primarily in years with strong increase in size. 
Ramification and regeneration after one year's delayed development occurred with constant 
frequency, while the frequencies of termination and regeneration from older parts and detached 
fragments varied considerably. 

Size declines were observed in 1991 and 1994, for segments that experienced short first 
autumn growing seasons (1990, 1993) and long winters with stable snow cover until May, that 
passed directly into dry early summers. The other winters were mild and rainy, without a 
permanent snow cover. This suggests that growth and population development of Hyloeomium 
splendens is primarily determined by the length of the period available for growth. In water
limited ectohydric bryophytes, growth occurs when tissue water content ( and temperature) is 
above a certain threshold (cf. Stalfelt 1937, Busby & Whitfield 1978, Sonesson et al. 1992). 
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PAPER XI 

Persistence, a species' tendency to remain in its original position and not to colonize new 
sites, is studied for 36 bryophyte species in spruce forest and 20 species (including 7 lichens) 
in pine forest in the Solhomfjell area. Data sets include presence/absence in 199 meso plots 
with 3184 subplots analyzed in 1988 and 1993 [ cf. II], and a subset with 50 meso plots ( every 
fourth meso plot) and 800 subplots, analyzed for six consecutive years. Persistence was 
calculated for different temporal (1-5 years) and spatial (1/16 and 1 m2

) scales. Persistence 
patterns in spruce and pine forests were closely similar. Two main components of variation 
in persistence were demonstrated by PCA analyses: (1) the absolute level of persistence which 
was strongly associated with size and ran from small bryophytes (mostly hepatics) to large 
mosses, hepatics, Sphagnum and lichens, and (2) variation related to spatial scale. No variation 
in persistence could be attributed to the main coenoclines (DCA axes 1 and 2 of paper [II]), 
but the ranking of species according to absolute persistence corresponded to the micro-scale 
coenocline of papers [IV, VII]. Persistence is discussed in relation to real and apparent 
disappearances and colonizations. Strong size-dependence of persistence is suggested a typical 
property of cryptogams, on the levels of species as well as individual shoots. 

PAPER XII 

Persistence [ cf. paper XI] and other species characteristics [ seedling frequency and mobility 
rate ( compiled from literature), mean cover and abundance in the study area] is studied for the 
most abundant forest vascular plants (25 species in spruce forest and 7 in pine forest) in the 
Solhomfjell area, using the same data sets as in [XI]. Dominance in the boreal forest floor is 
mostly by clonal species. Species with optima in poor spruce forest were slightly more mobile 
and achieved higher cover and abundance than species with optima in richer spruce forest. 

Persistence patterns in spruce and pine forests were similar, but persistence decreased 
towards the xeric pine forests. One main component of variation in persistence was 
demonstrated by PCA analyses: the absolute level of persistence, which is related to seedling 
recruitment vs clonal growth, and within clonal species to ramet longevity, abundance, 
mobility, growth pattern and mode of surviving the unfavourable season. Minor components 
of variation in persistence were related to spatial scale and temporal scale. Persistence 
characteristics were species-specific with little variation between years. Several species 
characteristics could account for variation in persistence, indicating continuous variation in a 
multidimensional life history characteristics space. 

PAPER XIII 

Changes in the occurrence (presence) and abundance ( frequency in 16 subplots) of vascular 
plants, bryophytes and lichens in the Solhomfjell area 1988-93 are studied, using the same 
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data sets as in paper [XI]. Nonparametric tests were performed all for combinations of species, 
data type (occurrence or abundance), forest type (spruce or pine), and time period (one-year 
or five-year). Results are interpreted using data on species persistence [papers XI,XII], and by 
comparison with European long-term and experimental studies. 

No vascular plants showed long-term trends in pine forest. The abundance changes 
observed for several cryptogams were probably due to short-term (between-year) climatic 
fluctuations, notably drought. Decrease was noted for liverworts with optima along the main 
coenocline (DCA 1 of paper [II]) in, or close to, the spruce forest (Barbilophozia floerkei, 
Calypogeia spp. and Ptilidium ciliare ), Sphagnum capi/lifolium, S. quinquefarium, and the 
moss Racomitrium lanuginosum with a western distribution, while increase was noted for 
species favoured by gap creation after drought (notably lichens, e.g., Cladonia coccifera agg., 
C. squamosa and C. chlorophaea agg., and Dicranum scoparium ). 

Five-year changes that probably represent long-term trends were found in spruce forest: 
(1) increase of Deschampsia flexuosa, (2) decrease of nine vascular plant species with 
preference for richer sites [ very strong for Oxalis acetosella (in 1993 absent from 90 of the 
231 subplots in which it occurred in 1988, while only 19 new occurrences were noted), strong 
also for Calamagrostis purpurea and Gymnocarpium dryopteris], and (3) increase ofbryophyte 
species (very strong for Dicranum majus, Hylocomium splendens, Plagiothecium laetum agg., 
Polytrichum formosum, and Rhytidiade/phus /oreus, strong for Dicranum fuscescens agg., D. 
scoparium, Barbilophozia floerkei, Chiloscyphus profundus, Lophozia obtusa and Ptilidium 
ciliare), notably species with optimum in poor spruce forest. 

Fertilization by airborne N may explain the expansion of D. flexuosa. Most of the 
declining vascular plants are among mesotrophic species hypothesized to be particularly 
vulnerable to long-term soil acidification (Falkengren-Grerup 1986, 1987, Wittig & Werner 
1986, Dahl 1988, Wittig 1988), but divergent trends have been reported in other studies. 

The increase of bryophytes was characterized by ( 1) independence of taxonomic group, 
size, life strategy and growth form, (2) synchronous one-year trends; increase of many species 
1988-89, 1989-90 and 1991-92 and decline of many species 1990-91, and (3) similar responses 
of congeners, e.g., in the genera Dicranum (3 species), Plagiothecium (3 species), 
Barbilophozia (4 species) and Rhytidiadelphus (2 species). This adds to previous evidence [IV, 
XI] for low importance of inter- (and intra-)specific competition between bryophytes in the 
boreal forest floor. The synchronous one-year changes and the lack of correspondence with 
trends in other long-term studies suggest that the bryophyte increase is caused by factors that 
operate on fine time-scales. Close correspondence with demographic variation in Hylocomium 
splendens [ cf. X] and climatic data (p. 9) indicate that the decisive factor is the length of the 
period available for growth. 

PAPER XIV 

Year-to-year vegetation changes 1988-93 in the Solhomfjell area was studied in 50 meso 
sample plots (cf. paper [XI]). The number of species per plot differed between vascular plants 
and cryptogams, and between forest types. One analysis included 78-87% of the six-year total 
number of vascular plants and 65-80% of cryptogams. This difference reflected among-group 
differences in persistence, among others related to differences in plant unit area. The number 
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of vascular plant species in pine forest decreased during dry years. The number of bryophyte 
species increased in spruce forest, as reported for abundance in paper [XIII]. 

The dissimilarity of repeated analyses increased with time, indicating considerable 
stochasticity at the 1 m2 scale. The dissimilarity between consecutive analyses of a plot (rate 
of vegetation dynamics), differed between forest types in a temporally invariant way: 
maximum in richer spruce forest, minimum in subxeric pine forest, intermediate values in the 
poor spruce and the xeric pine forest. This pattern can be ascribed to gradients in productivity, 
soil stability and intensity of disturbance. Higher dynamics of more species-rich vegetation 
indicates positive correlation between a and f3 diversity along temporal as well as spatial 
gradients. 

Significant overall vegetation change was demonstrated for most one-year periods and 
forest types, using CCA with binary time as the only constraining variable and Monte Carlo 
tests. Analyses from 1989-92 were passively fit into the DCA ordination of 200 sample plots, 
analyzed in 1988 and 1993. Directed vegetation change (in this ordination) was not related to 
forest type or one-year period, but a significant type x period interaction indicated that forest 
types were differently impacted by climatic fluctuations. 

PAPER XV 

Five-year changes in understory vegetation and properties of the humus layer (8 variables) in 
the Solhomfjell area are studied, using 400 analyses [200 meso plots x 2 times (1988 and 
1993)]. Soil acidification was strongest in richer spruce forest where pH decreased by ea. 0.3 
units, exchangeable Al and Mn doubled and Ca decreased. Accumulation of total-N was 
observed in poor spruce forest and pine forest. Significant overall vegetation change (tested 
by CCA with binary time as constraining variable, as in paper [XIV]) occurred in most forest 
types. This change was not explained by change in humus properties. 

The interpretation of DCA ordination axes in paper [II] (200 meso plots) also applied 
to the DCA ordination of 400 analyses. Directed change (along DCA axes) occurred in all 
forest types, but significant five-year trends were inferred (by comparing variances for five
year change with variances for change during one-year periods [paper XIV]) for spruce forest 
only. The mean displacement of plots from richer spruce forest ( vegetation, vascular plants, 
and cryptogams) was 0.1 S.D. units in direction of the poor spruce forest. Vascular plant 
change and change of cryptogams were not correlated and thus probably due to different 
causes. A long-term and broad-scale response of vascular plants to soil acidification was 
supported by comparison with other studies. Bryophyte change (both in richer spruce forest 
along DCA 1, and in poor spruce forest along DCA 2) as observed could be predicted from 
the increase in abundance ( cf. papers [XIII,XIV]) and species optimum positions [II]. 

The study demonstrates that ordination and constrained ordination methods are 
complementary approaches to vegetation change and that interpretation oflong-term vegetation 
change benefits from knowledge of short-term vegetation dynamics and environmental change. 
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PAPER XVI 

Changes in relative crown density of Norway spruce and Scots pine from 1988 to 1993 are 
studied in three data sets from SE Norway: (1) The two-county data set; 80 sample plots (250 
m2, with 237 Norway spruce and 280 Scots pine trees) from Telemark and Aust-Agder 
counties, included in NIJOS · 9x9 km regular grid for the national representative inventory 
(R0ni et al. 1988). (2) The 10 macro plots (50 m2, with 64 Norway spruce trees) in Grytdalen, 
Telemark, an area used for vegetational and ecological monitoring of boreal spruce forests in 
Norway (T. 0kland 1990, 1993, in prep.). (3) The 100 extended macro plots (64 m2, with 116 
Norway spruce and 68 Scots pine trees) in the Solhomfjell area. Data sets (2) and (3) included 
old-growth forest stands, while stands of all ages were included in ( 1 ). 

Crown density increased from 1988 to 1993 for spruce in the two-county data set (2.0%, 
P = 0.02) and for pine in the Solhomfjell area (4.1%, P = 0.0001), but declined for spruce in 
Grytdalen (7.2%, P < 0.0001) and the Solhomfjell area (4.4%, P = 0.0002). The largest 
reduction in crown density in Grytdalen occurred in nutrient-rich sites with favourable aspect. 
No relationship was found between change in crown density and main coenoclines or 
complex-gradients in the Solhomfjell area. 

The semi-variance of change in crown density in the two-county data set increased with 
increasing distance between plots; a range ( distance below which change in crown vigour is 
spatially structured) of ea. 18 km was indicated. No spatial structure of change in crown 
density was observed for spruce in Grytdalen and pine in Solhomfjell, while some spatial 
structuring with a range of ea. 20 m was indicated for spruce in Solhomfjell. Possible reasons 
for divergent trends in the two-county data set and the intensively studied areas include: 
differences in management practice, stand age, sampling technique used (representativity and 
observer errors), and regional differences ( climatic, or due to variation in the impact of long
distance airborne pollution). 

PAPER XVII 

Tree population dynamics 1988-93 is studied in the Solhomfjell area, using the 100 extended 
macro sample plots (64 m2

). The number of trees(> 2 m) increased by 0-10% for Betula spp., 
Picea abies, Pinus sylvestris, and Populus tremula, while Sorbus aucuparia increased by 40%. 
The annual mortality of spruce and pine trees was below 0.5%. The volume of standing trees 
increased with 2.18% per year for spruce and 2.14% for pine. Tree volume per unit area (stand 
volume) and average volume per tree decreased along DCA 1 (P < 0.01 ), i.e., with decreasing 
soil nutrient content in spruce forest and with increasing danger of desiccation in pine forest, 
cf. paper [II]. For individual trees, volume increment was negatively correlated with initial 
volume (P s 0.0001 ). Stand volume increment decreased along DCA 1 (P < 0.02) when 
differences in stand volume were corrected for. Humus layer acidification in the five-year 
period was weakly related to stand density (P = 0.02 for pHH2o, P > 0.1 for pHcac12 and Ca); 
on average pHH2o was reduced by 0.09 pH units more in the densest than in open stands. 

Size-structured transition matrix models were applied to demographic data for spruce 
and pine. The number of spruce seedlings and saplings ( < 2 m; estimated from occurrences 
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in 1/16 m2 subplots) was lower in 1993 than in 1988, in spruce as well as in pine forest. For 
pine, a decrease in pine forest was balanced by an increase in spruce forest [XIII]. The 
estimated population growth rates 1988-93 were A. = 0.9991 for spruce and A.= 1.0315 for 
pine (11. = 1.0415 and 11. = 1.0355, respectively, if constant numbers of plants < 2 m were 
assumed). 

Possible reasons for the increase in number and volume of trees in old-growth forest in 
the Solhomfjell area in the study period include: (1) temperatures above the average in the 
whole period, (2) N fertilization, and (3) natural stand development. 
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DISCUSSION AND GENERAL CONCLUSIONS 

VEGETATION STRUCTURE 

Main coenoclines in the Solhomjjell area 

Presence of three main coenoclines is demonstrated for the Solhomfjell area by ordination of 
vegetation, using sample plots of 1 m2 or smaller: ( 1) a main, broad-scale gradient from xeric, 
lichen-dominated pine forest via subxeric pine forest and poor, Vaccinium myrtillus-dominated 
spruce forest to richer, herb-rich spruce forest [II, III], (2) a fine-scale gradient mainly 
affecting cryptogamic species composition, and reflecting the degree of paludification ( e.g., 
dominance by Sphagnum spp. [II, VII]), and (3) a micro-scale gradient from dominance by 
small hepatics and mosses to dominance by larger forest floor species [IV, VII]. By use of 
measured environmental variables on scales ranging from 64 to 1/16 m2

, the underlying 
complex-gradients have been identified. Coenocline (1) is related to broad-scale topography, 
but the decisive factors differ between pine and spruce forest [II, III]. Nutrient availability, 
suggested by several authors to account for the variation along coenocline ( 1) from poor 
spruce to xeric pine forest [ cf. II] is ruled out by the results of [II, III, VI] that no nutrient 
decrease occurs along this coenocline. The soil moisture deficiency hypothesis, that variation 
in pine forest is set by probability and duration of soil moisture deficiency, was forwarded in 
[II] as an alternative. In paper [V] it is demonstrated that volumetric humus moisture does not 
explain variation along this coenocline. Nonlinear variation in soil texture and organic content 
occurs along the coenocline. An amended version of the soil moisture deficiency hypothesis, 
that the decisive factor is total moisture availability to plants, also dependent on soil depth, 
is therefore proposed. A complex-gradient in nutrient availability accounts for variation along 
coenocline ( 1) in spruce forest. Variation in median soil moisture, shown in [V] not to be 
correlated with soil moisture content in periods of extreme drought, explains the variation 
along coenocline (2) [II, III, V]. Median soil moisture and canopy cover are negatively 
correlated on broader scales ( e.g., in the Solhomfjell area, [II]), but on finer scales they may 
uncouple and form two complex-gradients [VII]. Coenocline (3) is related to micro-scale 
variation in topography [VII]. 

Detailed vegetation ecological studies from other regions are needed before valid 
generalizations can be made about the gradient structure of boreal forest vegetation. 

Relevance to vegetation models: vascular plants 

Low importance of competition relative to physiological tolerance (vegetation model (3), cf. 
pp. 9) along the main coenocline, the only important coenocline for vascular plants in the 
Solhomfjell area [II], is indicated by: (1) lack of a closed field layer ( occasional exceptions 
occur in the subxeric pine forest) [II], (2) no increase in nutrient concentrations from xeric 
pine forest to poor submesic spruce forest [II, VI, XV], (3) occurrence of most species with 
optima in poor spruce forest also in richer spruce forest [II], (4) ability to explain most species 
limits along the main coenocline by physiological tolerance [II], (5) dominance by clonal 
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species with low inter-ramet competition [cf. XII], (6) considerable life strategy variation, also 
among clonal species [XII], and (7) considerable fine-scale spatial and temporal mobility [XII, 
XIV]. Points (6) and (7) indicate that coexistence may occur without differentiation along fine
scale gradients, in accordance with the carousel model (van der Maarel & Sykes 1993, cf. 
[XII]). 

Relevance to vegetation models: cryptogams 

Low importance of competition among cryptogams is indicated by: ( 1) frequent occurrence 
of species mixtures in the forest floor, even at very fine scales (Amborg 1943, T. 0kland 
1990, [II, IV, VII]), (2) high frequency of bare patches on the forest floor [II], (3) low 
proportion of negative interspecific associations, even between bryophytes in spruce forest 
[IV], (4) large surplus of positive associations between congeners [IV], (5) higher average 
Hylocomium splendens size when the bottom layer is closed ([IX]; also see During 1990], (6) 
low danger of burial of Hylocomium splendens in the moss carpet at normal densities [VIII, 
IX], (7) considerable among-species variation in morphology, growth form, mobility, temporal 
and spatial persistence, and hence in life strategy [XI, XIV], (8) diffuse growth form makes 
bryophytes poor effect competitors (i.e.: they have low ability to suppress growth of co
occurring species, cf. Goldberg & Landa 1991) [IV, VIII], (9) high stress-tolerance (to 
periodic drought, low radiation, etc., cf. Proctor 1982) makes bryophytes good response 
competitors (i.e.: tolerant to presence of other species) [IV, VIII], (10) synchronous one-year 
change for bryophytes in spruce forest in the Solhomfjell area 1988-93 [XIII], and (11) the 
increase of most species, even congeners, in spruce forest 1988-93 [XIII]. 

The limits of cryptogamic species ( along the main coenocline) towards more mesic sites 
and towards sites with higher median soil moisture (and lower radiation stress) may also be 
set by lower inherent growth rates [II], in accordance with the competitive hierarchy theory 
(model (2) on pp. 7-8). This is supported by increasing rates of dynamics along presumed 
productivity gradients ( from subxeric pine forest to richer spruce forest, and from low to 
higher median soil moisture in pine forest) [cf. XIV], but questioned by several of the points 
above (notably (2), (7)-(11 )). Other possible causes of species limits towards mesic sites are: 
(1) unfavourable soil/litter conditions ( e.g., the loose, unstable litter often present in subxeric 
pine forest; cf. [V]), and (2) low physiological tolerance to the reduced radiation under a 
denser field layer in subxeric pine forest and spruce forest; both of which related to occurrence 
of the deciduous species, Vaccinium myrtillus. Low growth rates may operate as a second 
control mechanism, excluding species from more mesic sites. An analogous control mechanism 
that is rarely invoked, is the regulation by shoot density in Hylocomium splendens populations. 

Three explanations (models) may apply to coenocline (3): (1) the competitive hierarchy, 
indicated by co-ordinated variation in size [XI], persistence [XI], life strategy [VIII, XI], 
lifetime expectancy and mortality rates [VIII], and rate of dynamics [cf. IV, VII, VIII], (2) 
stress (physiological tolerance); larger species may be excluded by locally low throughfall 
precipitation, low radiation and high inclination in the micro-sites, and because of low ability 
to colonize bare, inorganic soil such as in strong slopes (During et al. 1988, Jonsson & Esseen 
in Jonsson 1993), also see papers [IV, VII, XI], and (3) micro-scale disturbance; because size 
increases slowly in clonal bryophyte populations, large size thus reflects long continuity [VIII] 
and successions towards dominance by large species will be reversed by micro-scale 
disturbance ( e.g., Jonsson & Esseen 1990). (1 )-(3) may all be important, and variation in their 
relative importance is expected to occur locally, regionally, and over time. 
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The competition concept 

The apparent conflict between vegetation models partly results from ( 1) different usage of 
terms such as competition ( cf. Goldberg 1990, Grace 1990), (2) focus on the whole forest 
ecosystem including trees or focus on the understory or single layers, and (3) different empha
sis on processes that all occur. In particular, the competition concept merits particular consi
deration. In my opinion, plant competition should only be used for neighbour interactions by 
which two species influence each other's performance (cf. Goldberg 1990). Mutual influence 
between neighbours mostly occurs within one layer between species with comparable mecha
nisms of water and nutrient uptake, etc. (a guild; cf. Root 1967). In this terminology, reduced 
radiation to the spruce forest understory is an example of stress ("external constraints which 
limit the rate of dry matter production ... "; Grime 1979: 21) rather than competitive action by 
trees. Species are then excluded from spruce forest by low physiological tolerance to shaded 
sites rather than by low ability to compete for light. This study gives several examples of main 
gradients ( in vegetation and environmental factors) that are accompanied by variation in 
productivity, and with species limits set primarily by physiological tolerance (pp. 22-23). 

This study emphasizes specific explanations applying to different coenoclines and layers 
rather than existence of one or a few general assembly rules. A high number of detailed 
vegetation ecological studies will be needed to decide whether the search for general assembly 
rules for vegetation will be in vain. 

Studies performed in the Solhomfjell area thus suggest existence of three major 
coenoclines in boreal forest vegetation, that physiological tolerance is of great importance for 
the distribution of understory species along these coenoclines, that fine-scale disturbance may 
be important locally at a fine scale, and that the role of interspecific competition has generally 
been strongly overestimated. The generality of these hypotheses should be tested with data 
from other parts of the boreal coniferous forest region. 

DYNAMICS OF PLANT POPULATIONS AND VEGETATION 

High fine-scale dynamics of the boreal forest understory is demonstrated at the species level. 
At the population level (within a species), dynamics is size-dependent in Hylocomium 
splendens [VIII, IX] and probably in other species as well. Persistence ( a measure of dynamics 
at the species level) is a species-specific property (with small within-species variation from 
year to year) [XI, XII], probably reflecting growth rates, environmental stress in preferred sites 
and disturbance intensity in the species' realized habitat niche. Temporal stability of the 
relative importance of different plant groups along the main coenocline [XIV] makes 
differences between forest types in rate of vegetation dynamics temporally invariant [XIV]. 

In the Solhomfjell area, directed vegetation change (along main coenoclines) appeared 
to be damped in the spruce forest, while no such damping occurred in pine forest during a 
five-year period [XV]. This accords with stronger influence of climatic fluctuations on 
variation in species abundances from year to year in the pine forest [XIII], and is also in 
accordance with the hypothesis that species abundances in pine forest is ultimately controlled 
by extreme climatic conditions [e.g., II]. 
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HAS LONG DISTANCE AIRBORNE POLLUTION CAUSED VEGETATION CHANGE? 

The pH reduction in humus in the Solhomfjell area from 1988 to 1993, by ea. 0.3 units in 
richer spruce forest [XV], exceeds the estimates obtained for maximum pH variation within 
one year (0.23 pH units with a lower number of samples, cf. [VI]) and maximum contribution 
from natural tree stand development ( ea. 0.02 pH units, cf. [XVII]). The increase of 
exchangeable Al and decrease of Ca in richer sites [XV] support the conclusion that soil 
acidification due to external causes has taken place. The increase of N in pine forest humus 
from 1988 to 1993 gives strong support to the hypotheses [ cf. II] that N is not restricting 
growth in pine forest and that pine forests in the Solhomfjell area are N-saturated. 

Significant change was observed in several tree layer descriptors from 1988 to 1993: 
(1) the volume of Scots pine and Norway spruce increased [XVII], (2) the number of 
deciduous trees(> 2 m), notably Sorbus aueuparia, increased [XVI, XVII], (3) relative crown 
density of spruce decreased [XVI], and (4) relative crown density of pine increased [XVI]. 
The Solhomfjell area is situated in a region with high frequency of defoliatiated crowns 
(Nellemann & Frogner 1994). Changes similar to (3) and (4) are reported for old-growth 
forests in Agder and Telemark by Solberg (1994), while the contrasting results in paper [XVI] 
for a representative data set was attributed, at least in part, to differences in stand age. 

A correlation between with crown defoliation and radial increment has been 
demonstrated for Norway spruce (Nellemann 1992, Soderberg 1993). Radial increment is 
strongly correlated with length of the annual leader shoot (Nellemann 1992), thus reduced 
crown vitality should be followed by reduced volume growth (Venn et al. 1993). 
Significant spruce volume increase in a period with reduced crown vigour appears a paradox. 
Increased annual volume increment has, however, been observed for spruce in SE Norway in 
this period also by Tomter (1993). Minimal increase in N as observed in the spruce forest in 
Solhomfjell may indicate that negative effects of acidification (leading to crown defoliation) 
have been more than compensated by addition of N ( cf. Venn et al. 1993 ), the main factor 
limiting growth [ see II]. The favourable climatic conditions in the study period, with high 
temperatures, no serious frost damage, insect pests, storm fellings etc. may also have 
contributed to growth increase and low mortality, just as observed in bryophytes. 

Five-year change is inferred by: ( 1) comparison of (i) occurrence and abundance of 
single species [XIII] and (ii) vegetation [XV] with corresponding one-year changes [XIII, 
XIV], and (2) due consideration of rates of vegetation dynamics [XIV], species persistence 
patterns [XI, XII] and climatic fluctuations. Significant five-year vegetation change, likely to 
be part of a long-term trend, did not occur in pine forest. The decrease in abundance of 
several moderately demanding vascular plant species in richer spruce forest [XIII], and the 
change of richer spruce forest vegetation in direction of poor spruce forest [XV], accord with 
the response to soil acidification expected from theoretical reasoning, and demonstrated in 
other studies. There are indications from the Solhomfjell studies that vegetation responds to 
the gradual acidification in a slow and time-delayed manner, at spatial and temporal scales 
larger than 1 m2 and 5 years [XV]. The slightly increasing abundance of Desehampsia 
flexuosa in spruce forest is the only observation which accords with expected responses to N 
fertilization [XIII, XV]. The increase of bryophyte abundances and the directed bryophyte 
vegetation change in spruce forest are both caused by particularly favourable climatic 
conditions for growth [X, XIII, XV]. 

Extended time periods and high-quality data from other regions are needed to evaluate 
the regional and temporal validity of explanations here proposed. 
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INTEGRATED APPROACHES TO MONITORING 

The ability to answer basic questions relating to structure, function and natural vegetation 
dynamics (aims 1 and 2) and the ability to find complex vertical relations (tree - understory -
soil interactions, cf. T. 0kland 1990) and time - scale interactions (Wiens 1989, cf. also 

[XIV]), were strongly improved by the integrated approach. In-depth insight into structure and 
function of the monitored system proved indispensible both for identification of changes and 
for understanding causes of change. Aspects of integrated approaches, demonstrated to have 
particular importance for monitoring, are [cf. XV]: (1) that relevant environmental information 
is recorded at each sample plot (T. 0kland 1990), (2) that the main coenoclines, the complex
gradients that cause them, and variation in rates of vegetation dynamics along them, must be 
quantified, and (3) that all plant groups should be included in the study. Point (3) may be 
particularly important when interspecific competition, as in the Solhomfjell area and perhaps 
in other coniferous forest areas, is of low importance. Then plants respond to the environment 
in accordance with their physiological constraints: moisture-limited ectohydric bryophytes 
repond to climatic factors ( and climatic change), vascular plants restricted by nutrient 
availability and soil acidity respond to soil acidification and perhaps to N fertilization. The 
multivariate monitoring system offered by the understory vegetation is likely to be much more 
sensitive to environmental change than the tree layer, and should be included in all future 
programmes for terrestrial monitoring. 
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